Manifolds of Nonpositive Curvature PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Manifolds of Nonpositive Curvature PDF full book. Access full book title Manifolds of Nonpositive Curvature by Werner Ballmann. Download full books in PDF and EPUB format.

Manifolds of Nonpositive Curvature

Manifolds of Nonpositive Curvature PDF Author: Werner Ballmann
Publisher: Springer Science & Business Media
ISBN: 1468491598
Category : Mathematics
Languages : en
Pages : 280

Book Description
This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the Collège de France in Paris. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.

Manifolds of Nonpositive Curvature

Manifolds of Nonpositive Curvature PDF Author: Werner Ballmann
Publisher: Springer Science & Business Media
ISBN: 1468491598
Category : Mathematics
Languages : en
Pages : 280

Book Description
This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the Collège de France in Paris. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.

Comparison Geometry

Comparison Geometry PDF Author: Karsten Grove
Publisher: Cambridge University Press
ISBN: 9780521592222
Category : Mathematics
Languages : en
Pages : 280

Book Description
This is an up to date work on a branch of Riemannian geometry called Comparison Geometry.

Geometry of Manifolds

Geometry of Manifolds PDF Author:
Publisher: Academic Press
ISBN: 0080873278
Category : Mathematics
Languages : en
Pages : 287

Book Description
Geometry of Manifolds

Comparison Theorems in Riemannian Geometry

Comparison Theorems in Riemannian Geometry PDF Author: Jeff Cheeger
Publisher: Newnes
ISBN: 0444107649
Category : Computers
Languages : en
Pages : 183

Book Description
Comparison Theorems in Riemannian Geometry

The Geometry of Total Curvature on Complete Open Surfaces

The Geometry of Total Curvature on Complete Open Surfaces PDF Author: Katsuhiro Shiohama
Publisher: Cambridge University Press
ISBN: 9780521450546
Category : Mathematics
Languages : en
Pages : 300

Book Description
This is a self-contained account of how some modern ideas in differential geometry can be used to tackle and extend classical results in integral geometry. The authors investigate the influence of total curvature on the metric structure of complete, non-compact Riemannian 2-manifolds, though their work, much of which has never appeared in book form before, can be extended to more general spaces. Many classical results are introduced and then extended by the authors. The compactification of complete open surfaces is discussed, as are Busemann functions for rays. Open problems are provided in each chapter, and the text is richly illustrated with figures designed to help the reader understand the subject matter and get intuitive ideas about the subject. The treatment is self-contained, assuming only a basic knowledge of manifold theory, so is suitable for graduate students and non-specialists who seek an introduction to this modern area of differential geometry.

Moduli Spaces of Riemannian Metrics

Moduli Spaces of Riemannian Metrics PDF Author: Wilderich Tuschmann
Publisher: Springer
ISBN: 3034809484
Category : Mathematics
Languages : en
Pages : 127

Book Description
This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces? We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research.

Geometry of Manifolds with Non-negative Sectional Curvature

Geometry of Manifolds with Non-negative Sectional Curvature PDF Author: Owen Dearricott
Publisher: Springer
ISBN: 3319063731
Category : Mathematics
Languages : en
Pages : 202

Book Description
Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.

Riemannian Manifolds

Riemannian Manifolds PDF Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 0387227261
Category : Mathematics
Languages : en
Pages : 232

Book Description
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Global Riemannian Geometry

Global Riemannian Geometry PDF Author: Thomas Willmore
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 226

Book Description


Handbook of Differential Geometry, Volume 1

Handbook of Differential Geometry, Volume 1 PDF Author: F.J.E. Dillen
Publisher: Elsevier
ISBN: 0080532837
Category : Mathematics
Languages : en
Pages : 1067

Book Description
In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.