Author: L. M. Kelly
Publisher: Springer
ISBN: 3540379460
Category : Mathematics
Languages : en
Pages : 257
Book Description
The Geometry of Metric and Linear Spaces
Author: L. M. Kelly
Publisher: Springer
ISBN: 3540379460
Category : Mathematics
Languages : en
Pages : 257
Book Description
Publisher: Springer
ISBN: 3540379460
Category : Mathematics
Languages : en
Pages : 257
Book Description
Geometry of Linear 2-normed Spaces
Author: Raymond W. Freese
Publisher: Nova Publishers
ISBN: 9781590330197
Category : Mathematics
Languages : en
Pages : 314
Book Description
Publisher: Nova Publishers
ISBN: 9781590330197
Category : Mathematics
Languages : en
Pages : 314
Book Description
Metric Affine Geometry
Author: Ernst Snapper
Publisher: Elsevier
ISBN: 1483269337
Category : Mathematics
Languages : en
Pages : 456
Book Description
Metric Affine Geometry focuses on linear algebra, which is the source for the axiom systems of all affine and projective geometries, both metric and nonmetric. This book is organized into three chapters. Chapter 1 discusses nonmetric affine geometry, while Chapter 2 reviews inner products of vector spaces. The metric affine geometry is treated in Chapter 3. This text specifically discusses the concrete model for affine space, dilations in terms of coordinates, parallelograms, and theorem of Desargues. The inner products in terms of coordinates and similarities of affine spaces are also elaborated. The prerequisites for this publication are a course in linear algebra and an elementary course in modern algebra that includes the concepts of group, normal subgroup, and quotient group. This monograph is suitable for students and aspiring geometry high school teachers.
Publisher: Elsevier
ISBN: 1483269337
Category : Mathematics
Languages : en
Pages : 456
Book Description
Metric Affine Geometry focuses on linear algebra, which is the source for the axiom systems of all affine and projective geometries, both metric and nonmetric. This book is organized into three chapters. Chapter 1 discusses nonmetric affine geometry, while Chapter 2 reviews inner products of vector spaces. The metric affine geometry is treated in Chapter 3. This text specifically discusses the concrete model for affine space, dilations in terms of coordinates, parallelograms, and theorem of Desargues. The inner products in terms of coordinates and similarities of affine spaces are also elaborated. The prerequisites for this publication are a course in linear algebra and an elementary course in modern algebra that includes the concepts of group, normal subgroup, and quotient group. This monograph is suitable for students and aspiring geometry high school teachers.
Metric Spaces of Non-Positive Curvature
Author: Martin R. Bridson
Publisher: Springer Science & Business Media
ISBN: 3662124947
Category : Mathematics
Languages : en
Pages : 665
Book Description
A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.
Publisher: Springer Science & Business Media
ISBN: 3662124947
Category : Mathematics
Languages : en
Pages : 665
Book Description
A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.
Lectures on Spaces of Nonpositive Curvature
Author: Werner Ballmann
Publisher: Springer Science & Business Media
ISBN: 9783764352424
Category : Mathematics
Languages : en
Pages : 126
Book Description
Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.
Publisher: Springer Science & Business Media
ISBN: 9783764352424
Category : Mathematics
Languages : en
Pages : 126
Book Description
Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.
A Course in Metric Geometry
Author: Dmitri Burago
Publisher: American Mathematical Soc.
ISBN: 0821821296
Category : Mathematics
Languages : en
Pages : 434
Book Description
"Metric geometry" is an approach to geometry based on the notion of length on a topological space. This approach experienced a very fast development in the last few decades and penetrated into many other mathematical disciplines, such as group theory, dynamical systems, and partial differential equations. The objective of this graduate textbook is twofold: to give a detailed exposition of basic notions and techniques used in the theory of length spaces, and, more generally, to offer an elementary introduction into a broad variety of geometrical topics related to the notion of distance, including Riemannian and Carnot-Caratheodory metrics, the hyperbolic plane, distance-volume inequalities, asymptotic geometry (large scale, coarse), Gromov hyperbolic spaces, convergence of metric spaces, and Alexandrov spaces (non-positively and non-negatively curved spaces).
Publisher: American Mathematical Soc.
ISBN: 0821821296
Category : Mathematics
Languages : en
Pages : 434
Book Description
"Metric geometry" is an approach to geometry based on the notion of length on a topological space. This approach experienced a very fast development in the last few decades and penetrated into many other mathematical disciplines, such as group theory, dynamical systems, and partial differential equations. The objective of this graduate textbook is twofold: to give a detailed exposition of basic notions and techniques used in the theory of length spaces, and, more generally, to offer an elementary introduction into a broad variety of geometrical topics related to the notion of distance, including Riemannian and Carnot-Caratheodory metrics, the hyperbolic plane, distance-volume inequalities, asymptotic geometry (large scale, coarse), Gromov hyperbolic spaces, convergence of metric spaces, and Alexandrov spaces (non-positively and non-negatively curved spaces).
Metric Methods of Finsler Spaces and in the Foundations of Geometry. (AM-8)
Author: Herbert Busemann
Publisher: Princeton University Press
ISBN: 140088229X
Category : Mathematics
Languages : en
Pages : 243
Book Description
The description for this book, Metric Methods of Finsler Spaces and in the Foundations of Geometry. (AM-8), will be forthcoming.
Publisher: Princeton University Press
ISBN: 140088229X
Category : Mathematics
Languages : en
Pages : 243
Book Description
The description for this book, Metric Methods of Finsler Spaces and in the Foundations of Geometry. (AM-8), will be forthcoming.
Geometry of Cuts and Metrics
Author: Michel Marie Deza
Publisher: Springer
ISBN: 3642042953
Category : Mathematics
Languages : en
Pages : 580
Book Description
Cuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, combinatorial matrix theory, statistical physics, VLSI design etc. This book presents a wealth of results, from different mathematical disciplines, in a unified comprehensive manner, and establishes new and old links, which cannot be found elsewhere. It provides a unique and invaluable source for researchers and graduate students. From the Reviews: "This book is definitely a milestone in the literature of integer programming and combinatorial optimization. It draws from the Interdisciplinarity of these fields [...]. With knowledge about the relevant terms, one can enjoy special subsections without being entirely familiar with the rest of the chapter. This makes it not only an interesting research book but even a dictionary. [...] The longer one works with it, the more beautiful it becomes." Optima 56, 1997.
Publisher: Springer
ISBN: 3642042953
Category : Mathematics
Languages : en
Pages : 580
Book Description
Cuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, combinatorial matrix theory, statistical physics, VLSI design etc. This book presents a wealth of results, from different mathematical disciplines, in a unified comprehensive manner, and establishes new and old links, which cannot be found elsewhere. It provides a unique and invaluable source for researchers and graduate students. From the Reviews: "This book is definitely a milestone in the literature of integer programming and combinatorial optimization. It draws from the Interdisciplinarity of these fields [...]. With knowledge about the relevant terms, one can enjoy special subsections without being entirely familiar with the rest of the chapter. This makes it not only an interesting research book but even a dictionary. [...] The longer one works with it, the more beautiful it becomes." Optima 56, 1997.
The Geometry of Metric and Linear Spaces
Author: L. M. Kelly
Publisher:
ISBN: 9783662176252
Category :
Languages : en
Pages : 260
Book Description
Publisher:
ISBN: 9783662176252
Category :
Languages : en
Pages : 260
Book Description
Geometry of Normed Linear Spaces
Author: Robert Gardner Bartle
Publisher: American Mathematical Soc.
ISBN: 0821850571
Category : Mathematics
Languages : en
Pages : 186
Book Description
Features 17 papers that resulted from a 1983 conference held to honor Professor Mahlon Marsh Day upon his retirement from the University of Illinois. This work is suitable for researchers and graduate students in functional analysis.
Publisher: American Mathematical Soc.
ISBN: 0821850571
Category : Mathematics
Languages : en
Pages : 186
Book Description
Features 17 papers that resulted from a 1983 conference held to honor Professor Mahlon Marsh Day upon his retirement from the University of Illinois. This work is suitable for researchers and graduate students in functional analysis.