The FitzHugh-Nagumo Model PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The FitzHugh-Nagumo Model PDF full book. Access full book title The FitzHugh-Nagumo Model by C. Rocsoreanu. Download full books in PDF and EPUB format.

The FitzHugh-Nagumo Model

The FitzHugh-Nagumo Model PDF Author: C. Rocsoreanu
Publisher: Springer Science & Business Media
ISBN: 9401595488
Category : Mathematics
Languages : en
Pages : 245

Book Description
The present monograph analyses the FitzHugh-Nagumo (F-N) model Le. , the Cauchy problem for some generalized Van der Pol equation depending on three real parameters a, band c. This model, given in (1. 1. 17), governs the initiation of the cardiac impulse. The presence of the three parameters leads to a large variety of dy namics, each of them responsible for a specific functioning of the heart. For physiologists it is highly desirable to have aglobai view of all possible qualitatively distinct responses of the F-N model for all values of the pa rameters. This reduces to the knowledge of the global bifurcation diagram. So far, only a few partial results appeared and they were spread through out the literature. Our work provides a more or less complete theoretical and numerical investigation of the complex phase dynamics and bifurca tions associated with the F-N dynamical system. This study includes the static and dynamic bifurcations generated by the variation of a, band c and the corresponding oscillations, of special interest for applications. It enables one to predict all possible types of initiations of heart beats and the mechanism of transformation of some types of oscillations into others by following the dynamics along transient phase space trajectories. Of course, all these results hold for the F-N model. The global phase space picture enables one to determine the domain of validity of this model.

The FitzHugh-Nagumo Model

The FitzHugh-Nagumo Model PDF Author: C. Rocsoreanu
Publisher: Springer Science & Business Media
ISBN: 9401595488
Category : Mathematics
Languages : en
Pages : 245

Book Description
The present monograph analyses the FitzHugh-Nagumo (F-N) model Le. , the Cauchy problem for some generalized Van der Pol equation depending on three real parameters a, band c. This model, given in (1. 1. 17), governs the initiation of the cardiac impulse. The presence of the three parameters leads to a large variety of dy namics, each of them responsible for a specific functioning of the heart. For physiologists it is highly desirable to have aglobai view of all possible qualitatively distinct responses of the F-N model for all values of the pa rameters. This reduces to the knowledge of the global bifurcation diagram. So far, only a few partial results appeared and they were spread through out the literature. Our work provides a more or less complete theoretical and numerical investigation of the complex phase dynamics and bifurca tions associated with the F-N dynamical system. This study includes the static and dynamic bifurcations generated by the variation of a, band c and the corresponding oscillations, of special interest for applications. It enables one to predict all possible types of initiations of heart beats and the mechanism of transformation of some types of oscillations into others by following the dynamics along transient phase space trajectories. Of course, all these results hold for the F-N model. The global phase space picture enables one to determine the domain of validity of this model.

Encyclopedia of Computational Neuroscience

Encyclopedia of Computational Neuroscience PDF Author: Dieter Jaeger
Publisher:
ISBN: 9781461473206
Category : Computational neuroscience
Languages : en
Pages :

Book Description


Nonlinear Dynamics: The Richard Rand 50th Anniversary Volume

Nonlinear Dynamics: The Richard Rand 50th Anniversary Volume PDF Author: Ardeshir Guran
Publisher: World Scientific
ISBN: 981450078X
Category : Science
Languages : en
Pages : 248

Book Description
This book is a collection of papers on the subject of nonlinear dynamics and its applications written by experts in this field. It offers the reader a sampling of exciting research areas in this fast-growing field. The topics covered include chaos, tools to analyze motions, fractal boundaries, dynamics of the Fitzhugh-Nagumo equation, structural control, separation of contaminations from signal of interest, parametric excitation, stochastic bifurcation, mode localization in repetitive structures, Toda lattice, transition from soliton to chaotic motion, nonlinear normal modes, noise perturbations of nonlinear dynamical systems, and phase locking of coupled limit cycle oscillators. Mathematical methods include Lie transforms, Monte Carlo simulations, stochastic calculus, perturbation methods and proper orthogonal decomposition. Applications include gyrodynamics, tether connected satellites, shell buckling, nonlinear circuits, volume oscillations of a large lake, systems with stick-slip friction, imperfect or disordered structures, overturning of rigid blocks, central pattern generators, flow induced oscillations, shape control and vibration suppression of elastic structures.All of these diverse contributions have a common thread: the world of nonlinear behavior. Although linear dynamics is an invaluable tool, there are many problems where nonlinear effects are essential. Some examples include bifurcation of solutions, stability of motion, the effects of large displacements, and subharmonic resonance. This book shows how nonlinear dynamics is currently being utilized and investigated. It will be of interest to engineers, applied mathematicians and physicists.

Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience PDF Author: Eugene M. Izhikevich
Publisher: MIT Press
ISBN: 0262514206
Category : Medical
Languages : en
Pages : 459

Book Description
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

Neuronal Dynamics

Neuronal Dynamics PDF Author: Wulfram Gerstner
Publisher: Cambridge University Press
ISBN: 1107060834
Category : Computers
Languages : en
Pages : 591

Book Description
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Pattern Formation and Dynamics in Nonequilibrium Systems

Pattern Formation and Dynamics in Nonequilibrium Systems PDF Author: Michael Cross
Publisher: Cambridge University Press
ISBN: 0521770505
Category : Mathematics
Languages : en
Pages : 547

Book Description
An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.

Introductory Biophysics

Introductory Biophysics PDF Author: James R. Claycomb
Publisher: Jones & Bartlett Learning
ISBN: 0763779989
Category : Medical
Languages : en
Pages : 375

Book Description
Designed for biology, physics, and medical students, Introductory Biophysics: Perspectives on the Living State, provides a comprehensive overview of the complex subject of biological physics. The companion CD-ROM, with MATLAB examples and the student version of QuickFieldTM, allows the student to perform biophysical simulations and modify the textbook example files. Included in the text are computer simulations of thermodynamics, astrobiology, the response of living cells to external fields, chaos in population dynamics, numerical models of evolution, electrical circuit models of cell suspension, gap junctions, and neuronal action potentials. With this text students will be able to perform biophysical simulations within hours. MATLAB examples include; the Hodgkin Huxley equations; the FitzHugh-Nagumo model of action potentials; fractal structures in biology; chaos in population dynamics; the cellular automaton model (the game of life); pattern formation in reaction-diffusion systems. QuickFieldTM tutorials and examples include; calculation of currents in biological tissue; cells under electrical stimulation; induced membrane potentials; heat transfer and analysis of stress in biomaterials.

MATLAB for Neuroscientists

MATLAB for Neuroscientists PDF Author: Pascal Wallisch
Publisher: Academic Press
ISBN: 0123838371
Category : Psychology
Languages : en
Pages : 571

Book Description
MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. - The first complete volume on MATLAB focusing on neuroscience and psychology applications - Problem-based approach with many examples from neuroscience and cognitive psychology using real data - Illustrated in full color throughout - Careful tutorial approach, by authors who are award-winning educators with strong teaching experience

Lectures on Fractal Geometry and Dynamical Systems

Lectures on Fractal Geometry and Dynamical Systems PDF Author: Ya. B. Pesin
Publisher: American Mathematical Soc.
ISBN: 0821848895
Category : Mathematics
Languages : en
Pages : 334

Book Description
Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.

Hyperbolic Chaos

Hyperbolic Chaos PDF Author: Sergey P. Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 3642236669
Category : Science
Languages : en
Pages : 318

Book Description
"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.