The Evolution of the Euclidean Elements PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Evolution of the Euclidean Elements PDF full book. Access full book title The Evolution of the Euclidean Elements by W.R. Knorr. Download full books in PDF and EPUB format.

The Evolution of the Euclidean Elements

The Evolution of the Euclidean Elements PDF Author: W.R. Knorr
Publisher: Springer Science & Business Media
ISBN: 9789027705099
Category : Mathematics
Languages : en
Pages : 402

Book Description
The present work has three principal objectives: (1) to fix the chronology of the development of the pre-Euclidean theory of incommensurable magnitudes beginning from the first discoveries by fifth-century Pythago reans, advancing through the achievements of Theodorus of Cyrene, Theaetetus, Archytas and Eudoxus, and culminating in the formal theory of Elements X; (2) to correlate the stages of this developing theory with the evolution of the Elements as a whole; and (3) to establish that the high standards of rigor characteristic of this evolution were intrinsic to the mathematicians' work. In this third point, we wish to counterbalance a prevalent thesis that the impulse toward mathematical rigor was purely a response to the dialecticians' critique of foundations; on the contrary, we shall see that not until Eudoxus does there appear work which may be described as purely foundational in its intent. Through the examination of these problems, the present work will either alter or set in a new light virtually every standard thesis about the fourth-century Greek geometry. I. THE PRE-EUCLIDEAN THEORY OF INCOMMENSURABLE MAGNITUDES The Euclidean theory of incommensurable magnitudes, as preserved in Book X of the Elements, is a synthetic masterwork. Yet there are detect able seams in its structure, seams revealed both through terminology and through the historical clues provided by the neo-Platonist commentator Proclus.

The Evolution of the Euclidean Elements

The Evolution of the Euclidean Elements PDF Author: W.R. Knorr
Publisher: Springer Science & Business Media
ISBN: 9789027705099
Category : Mathematics
Languages : en
Pages : 402

Book Description
The present work has three principal objectives: (1) to fix the chronology of the development of the pre-Euclidean theory of incommensurable magnitudes beginning from the first discoveries by fifth-century Pythago reans, advancing through the achievements of Theodorus of Cyrene, Theaetetus, Archytas and Eudoxus, and culminating in the formal theory of Elements X; (2) to correlate the stages of this developing theory with the evolution of the Elements as a whole; and (3) to establish that the high standards of rigor characteristic of this evolution were intrinsic to the mathematicians' work. In this third point, we wish to counterbalance a prevalent thesis that the impulse toward mathematical rigor was purely a response to the dialecticians' critique of foundations; on the contrary, we shall see that not until Eudoxus does there appear work which may be described as purely foundational in its intent. Through the examination of these problems, the present work will either alter or set in a new light virtually every standard thesis about the fourth-century Greek geometry. I. THE PRE-EUCLIDEAN THEORY OF INCOMMENSURABLE MAGNITUDES The Euclidean theory of incommensurable magnitudes, as preserved in Book X of the Elements, is a synthetic masterwork. Yet there are detect able seams in its structure, seams revealed both through terminology and through the historical clues provided by the neo-Platonist commentator Proclus.

Euclid's Elements

Euclid's Elements PDF Author: Euclid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544

Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.

The Evolution of the Euclidean Elements

The Evolution of the Euclidean Elements PDF Author: W.R. Knorr
Publisher: Springer Science & Business Media
ISBN: 9401017549
Category : Philosophy
Languages : en
Pages : 389

Book Description
The present work has three principal objectives: (1) to fix the chronology of the development of the pre-Euclidean theory of incommensurable magnitudes beginning from the first discoveries by fifth-century Pythago reans, advancing through the achievements of Theodorus of Cyrene, Theaetetus, Archytas and Eudoxus, and culminating in the formal theory of Elements X; (2) to correlate the stages of this developing theory with the evolution of the Elements as a whole; and (3) to establish that the high standards of rigor characteristic of this evolution were intrinsic to the mathematicians' work. In this third point, we wish to counterbalance a prevalent thesis that the impulse toward mathematical rigor was purely a response to the dialecticians' critique of foundations; on the contrary, we shall see that not until Eudoxus does there appear work which may be described as purely foundational in its intent. Through the examination of these problems, the present work will either alter or set in a new light virtually every standard thesis about the fourth-century Greek geometry. I. THE PRE-EUCLIDEAN THEORY OF INCOMMENSURABLE MAGNITUDES The Euclidean theory of incommensurable magnitudes, as preserved in Book X of the Elements, is a synthetic masterwork. Yet there are detect able seams in its structure, seams revealed both through terminology and through the historical clues provided by the neo-Platonist commentator Proclus.

Encounters with Euclid

Encounters with Euclid PDF Author: Benjamin Wardhaugh
Publisher: Princeton University Press
ISBN: 0691235767
Category : Mathematics
Languages : en
Pages : 416

Book Description
A sweeping cultural history of one of the most influential mathematical books ever written Euclid's Elements of Geometry is one of the fountainheads of mathematics—and of culture. Written around 300 BCE, it has traveled widely across the centuries, generating countless new ideas and inspiring such figures as Isaac Newton, Bertrand Russell, Abraham Lincoln, and Albert Einstein. Encounters with Euclid tells the story of this incomparable mathematical masterpiece, taking readers from its origins in the ancient world to its continuing influence today. In this lively and informative book, Benjamin Wardhaugh explains how Euclid’s text journeyed from antiquity to the Renaissance, introducing some of the many readers, copyists, and editors who left their mark on the Elements before handing it on. He shows how some read the book as a work of philosophy, while others viewed it as a practical guide to life. He examines the many different contexts in which Euclid's book and his geometry were put to use, from the Neoplatonic school at Athens and the artisans' studios of medieval Baghdad to the Jesuit mission in China and the workshops of Restoration London. Wardhaugh shows how the Elements inspired ideas in theology, art, and music, and how the book has acquired new relevance to the strange geometries of dark matter and curved space. Encounters with Euclid traces the life and afterlives of one of the most remarkable works of mathematics ever written, revealing its lasting role in the timeless search for order and reason in an unruly world.

Euclid's Window

Euclid's Window PDF Author: Leonard Mlodinow
Publisher: Simon and Schuster
ISBN: 1439135371
Category : Science
Languages : en
Pages : 326

Book Description
Through Euclid's Window Leonard Mlodinow brilliantly and delightfully leads us on a journey through five revolutions in geometry, from the Greek concept of parallel lines to the latest notions of hyperspace. Here is an altogether new, refreshing, alternative history of math revealing how simple questions anyone might ask about space -- in the living room or in some other galaxy -- have been the hidden engine of the highest achievements in science and technology. Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.

The Elements

The Elements PDF Author: Euclid
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 558

Book Description


The Thirteen Books of Euclid's Elements

The Thirteen Books of Euclid's Elements PDF Author: Euclid
Publisher: Createspace Independent Publishing Platform
ISBN: 9781546376675
Category :
Languages : en
Pages : 448

Book Description
Euclid's Elements is a mathematical and geometric treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt circa 300 BC. It is a collection of definitions, postulates (axioms), propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover Euclidean geometry and the ancient Greek version of elementary number theory. The work also includes an algebraic system that has become known as geometric algebra, which is powerful enough to solve many algebraic problems, including the problem of finding the square root of a number. Elements is the second-oldest extant Greek mathematical treatise after Autolycus' On the Moving Sphere, and it is the oldest extant axiomatic deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science. According to Proclus, the term "element" was used to describe a theorem that is all-pervading and helps furnishing proofs of many other theorems. The word 'element' in the Greek language is the same as 'letter'. This suggests that theorems in the Elements should be seen as standing in the same relation to geometry as letters to language. Later commentators give a slightly different meaning to the term element, emphasizing how the propositions have progressed in small steps, and continued to build on previous propositions in a well-defined order.

The History of Mathematical Proof in Ancient Traditions

The History of Mathematical Proof in Ancient Traditions PDF Author: Karine Chemla
Publisher: Cambridge University Press
ISBN: 1139510584
Category : Philosophy
Languages : en
Pages : 522

Book Description
This radical, profoundly scholarly book explores the purposes and nature of proof in a range of historical settings. It overturns the view that the first mathematical proofs were in Greek geometry and rested on the logical insights of Aristotle by showing how much of that view is an artefact of nineteenth-century historical scholarship. It documents the existence of proofs in ancient mathematical writings about numbers and shows that practitioners of mathematics in Mesopotamian, Chinese and Indian cultures knew how to prove the correctness of algorithms, which are much more prominent outside the limited range of surviving classical Greek texts that historians have taken as the paradigm of ancient mathematics. It opens the way to providing the first comprehensive, textually based history of proof.

The History of the Geometry Curriculum in the United States

The History of the Geometry Curriculum in the United States PDF Author: Nathalie Sinclair
Publisher: IAP
ISBN: 1607527308
Category : Education
Languages : en
Pages : 114

Book Description
This volume investigates the evolution of the geometry curriculum in the United States over the past 150 years. A primary goal is to increase awareness of the shape and nature of the current geometry curriculum by explaining how things have come to be as they are. Given the limited access to first-hand accounts of the enacted geometry curriculum during the past 150 years, the monograph relies on textbooks to provide a record of the implemented curriculum at any given point in time. Policy documents can provide insight into the choices made in textbooks by hinting at the issues considered and the recommendations made. The monograph is organized in a chronological sequence of "notable events" leading to discernable changes in thinking about the geometry curriculum over the past century and a half—roughly the extent of time during which geometry has been taught in American schools. Notable events include important reports or commissions, influential texts, new schools of thought, and developments in learning technologies. These events affected, among other things: content and aims of the geometry curriculum; the nature of mathematical activity as construed by both mathematicians and mathematics educators; and, the resources students are given for engaging in mathematical activity. Before embarking through the notable events, it is necessary to consider the "big bang" of geometry, namely the moment in time that shaped the future life of the geometry curriculum. This corresponds to the emergence of Euclidean geometry. Given its influence on the shape of the geometry curriculum, familiarity with the nature of the geometry articulated in Euclid’s Elements is essential to understanding the many tensions that surround the school geometry curriculum. Several themes emerge over the course of the monograph, and include: the aims and means of the geometry curriculum, the importance of proof in geometry, the role of visualization and tactile experiences, the fusion between solid and plane geometry, the curricular connections between geometry and algebra, and the use of motion and continuity. The intended audience would include curriculum developers, researchers, teachers, and curriculum supervisors.

Elements of the History of Mathematics

Elements of the History of Mathematics PDF Author: N. Bourbaki
Publisher: Springer Science & Business Media
ISBN: 9783540647676
Category : Mathematics
Languages : en
Pages : 316

Book Description
Each volume of Nicolas Bourbakis well-known work, The Elements of Mathematics, contains a section or chapter devoted to the history of the subject. This book collects together those historical segments with an emphasis on the emergence, development, and interaction of the leading ideas of the mathematical theories presented in the Elements. In particular, the book provides a highly readable account of the evolution of algebra, geometry, infinitesimal calculus, and of the concepts of number and structure, from the Babylonian era through to the 20th century.