THE DEVELOPMENT OF PLASMA-MATERIAL INTERACTION FACILITIES FOR THE FUTURE OF FUSION TECHNOLOGY. PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download THE DEVELOPMENT OF PLASMA-MATERIAL INTERACTION FACILITIES FOR THE FUTURE OF FUSION TECHNOLOGY. PDF full book. Access full book title THE DEVELOPMENT OF PLASMA-MATERIAL INTERACTION FACILITIES FOR THE FUTURE OF FUSION TECHNOLOGY. by . Download full books in PDF and EPUB format.

THE DEVELOPMENT OF PLASMA-MATERIAL INTERACTION FACILITIES FOR THE FUTURE OF FUSION TECHNOLOGY.

THE DEVELOPMENT OF PLASMA-MATERIAL INTERACTION FACILITIES FOR THE FUTURE OF FUSION TECHNOLOGY. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


THE DEVELOPMENT OF PLASMA-MATERIAL INTERACTION FACILITIES FOR THE FUTURE OF FUSION TECHNOLOGY.

THE DEVELOPMENT OF PLASMA-MATERIAL INTERACTION FACILITIES FOR THE FUTURE OF FUSION TECHNOLOGY. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 76

Book Description
Fusion energy is the most promising energy source for the future and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma material interaction (PMI) science and the technology of plasma facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14 MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma facing materials (PFCs) and materials as the only Tier 1 issues, requiring a ". . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term." The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma-material interface for the technology facilities needed for DEMO oriented R & D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL's proposal of an advanced Material Plasma Exposure eXperiment. Establishing this midscale plasma materials test facility at ORNL is a key element in ORNL's strategy to secure a leadership role for decades of fusion R & D. That is to say, our end goal is to bring the "signature facility" FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material-Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors where PFCs will be exposed to dense high temperature hydrogen plasmas providing steady state heat fluxes of 5-20 MW/m2 and ion fluxes up to 1024 m-2s-1. Since PFCs will have to withstand neutron irradiation displacement damage up to 50 dpa, the target station design must accommodate radioactive specimens (materials to be irradiated in HFIR or at SNS) to enable investigations of the impact of neutron damage on materials. Therefore, the system will have to be able to install and extract irradiated specimens using equipment and methods to avoid sample modification, control contamination, and minimize worker dose. Included in the design considerations will be an assessment of all the steps between neutron irradiation and post-exposure materials examination/characterization, as well as an evaluation of the facility hazard categorization. In particular, the factors associated with the acquisition of radioactive specimens and their preparation, transportation, experimental configuration at the plasma-specimen interface, post-plasma-exposure sample handling, and specimen preparation will be evaluated.

Plasma Science and Technology

Plasma Science and Technology PDF Author: Haikel Jelassi
Publisher: BoD – Books on Demand
ISBN: 1789852390
Category : Science
Languages : en
Pages : 330

Book Description
Usually called the "fourth state of matter," plasmas make up more than 99% of known material. In usual terminology, this term generally refers to partially or totally ionized gas and covers a large number of topics with very different characteristics and behaviors. Over the last few decades, the physics and engineering of plasmas was experiencing a renewed interest, essentially born of a series of important applications such as thin-layer deposition, surface treatment, isotopic separation, integrated circuit etchings, medicine, etc. Plasma Science

Plasma-material Interactions in a Controlled Fusion Reactor

Plasma-material Interactions in a Controlled Fusion Reactor PDF Author: Tetsuo Tanabe
Publisher:
ISBN: 9788981160326
Category : Force and energy
Languages : en
Pages : 0

Book Description
This book is a primer on the interplay between plasma and materials in a fusion reactor, so-called plasma-materials interactions (PMIs), highlighting materials and their influence on plasma through PMI. It aims to demonstrate that a plasma-facing surface (PFS) responds actively to fusion plasma and that the clarifying nature of PFS is indispensable to understanding the influence of PFS on plasma. It describes the modern insight into PMI, namely, relevant feedback to plasma performance from plasma-facing material (PFM) on changes in a material surface by plasma power load by radiation and particles, contrary to a conventional view that unilateral influence from plasma on PFM is dominant in PMI. There are many books and reviews on PMI in the context of plasma physics, that is, how plasma or plasma confinement works in PMI. By contrast, this book features a materials aspect in PMI focusing on changes caused by heat and particle load from plasma: how PFMs are changed by plasma exposure and then, accordingly, how the changed PFM interacts with plasma.

Magnetic Fusion Technology

Magnetic Fusion Technology PDF Author: Thomas J. Dolan
Publisher: Springer Science & Business Media
ISBN: 1447155564
Category : Technology & Engineering
Languages : en
Pages : 816

Book Description
Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309487463
Category : Science
Languages : en
Pages : 341

Book Description
Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.

Plasma Science

Plasma Science PDF Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309677608
Category :
Languages : en
Pages : 291

Book Description
Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.

Present Status of Plasma-wall Interactions Research and Materials Development Activities in the US.

Present Status of Plasma-wall Interactions Research and Materials Development Activities in the US. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 22

Book Description
It is well known in the fusion engineering community that the plasma confinement performance in magnetic fusion devices is strongly affected by edge-plasma interactions with surface components. These plasma-material interactions (PMI) include fuel particle recycling and impurity generation both during normal and off-normal operation. To understand and then to control PMI effects, considerable effort has been made, particularly over the last decade in US, supported by Department of Energy, Division of Development and Technology. Also, because plasma-facing components are generally expected to receive significant amount of heat due to plasma bombardment and run-away electrons, materials must tolerate high-heat fluxes (HHF). The HHF-component research has been conducted in parallel with PMI research. One strong motivation for these research activities is that DT-burning experiments are currently planned in the Tokamak Test Fusion Reactor (TFTR) in early 1990s. Several different but mutually complementary approaches have been taken in the PMI+HHF research. The first approach is to conduct PMI experiments using toroidal fusion devices such as TFTR. The second one is to simulate elemental processes involved in PMI using ion beams and electron beams, etc. The last one but not least is to use non-tokamak plasma facilities. Along with these laboratory activities, new materials have been developed and evaluated from the PMI+HHF point of view. In this paper, several major PMI+HHF research facilities in US and their activities are briefly reviewed. 21 refs., 10 figs., 2 tabs.

Plasma-Material Interaction in Controlled Fusion

Plasma-Material Interaction in Controlled Fusion PDF Author: Dirk Naujoks
Publisher: Springer Science & Business Media
ISBN: 3540321497
Category : Technology & Engineering
Languages : en
Pages : 279

Book Description
This book deals with the specific contact between the fourth state of matter, i.e. plasma, and the first state of matter, i.e. a solid wall, in controlled fusion experiments. A comprehensive analysis of the main processes of plasma-surface interaction is given together with an assessment of the most critical questions within the context of general criteria and operation limits. It also contains a survey on other important aspects in nuclear fusion.

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309487439
Category : Science
Languages : en
Pages : 341

Book Description
Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.