The Design of Swept Wing Planforms to Improve Tip-stalling Characteristics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Design of Swept Wing Planforms to Improve Tip-stalling Characteristics PDF full book. Access full book title The Design of Swept Wing Planforms to Improve Tip-stalling Characteristics by G.G. Brebner. Download full books in PDF and EPUB format.

The Design of Swept Wing Planforms to Improve Tip-stalling Characteristics

The Design of Swept Wing Planforms to Improve Tip-stalling Characteristics PDF Author: G.G. Brebner
Publisher:
ISBN:
Category :
Languages : en
Pages : 29

Book Description


The Design of Swept Wing Planforms to Improve Tip-stalling Characteristics

The Design of Swept Wing Planforms to Improve Tip-stalling Characteristics PDF Author: G.G. Brebner
Publisher:
ISBN:
Category :
Languages : en
Pages : 29

Book Description


A Review of the Stall Characteristics of Swept Wings

A Review of the Stall Characteristics of Swept Wings PDF Author: Charles W. Harper (Jr.)
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 56

Book Description


Synthesis of Subsonic Airplane Design

Synthesis of Subsonic Airplane Design PDF Author: E. Torenbeek
Publisher: Springer Science & Business Media
ISBN: 9401732027
Category : Technology & Engineering
Languages : en
Pages : 607

Book Description
Since the education of aeronautical engineers at Delft University of Technology started in 1940 under tae inspiring leadership of Professor H.J. van der Maas, much emphasis has been placed on the design of aircraft as part of the student's curriculum. Not only is aircraft design an optional subject for thesis work, but every aeronautical student has to carry out a preliminary airplane design in the course of his study. The main purpose of this preliminary design work is to enable the student to synthesize the knowledge ob tained separately in courses on aerodynamics, aircraft performances, stability and con trol, aircraft structures, etc. The student's exercises in preliminary design have been directed through the years by a number of staff members of the Department of Aerospace Engineering in Delft. The author of this book, Mr. E. Torenbeek, has made a large contribution to this part of the study programme for many years. Not only has he acquired vast experience in teaching airplane design at university level, but he has also been deeply involved in design-oriented re search, e.g. developing rational design methods and systematizing design information. I am very pleased that this wealth of experience, methods and data is now presented in this book.

Technical Note - National Advisory Committee for Aeronautics

Technical Note - National Advisory Committee for Aeronautics PDF Author: United States. National Advisory Committee for Aeronautics
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 992

Book Description


A Design Summary of Stall Characteristics of Straight Wing Aircraft

A Design Summary of Stall Characteristics of Straight Wing Aircraft PDF Author: M. A. McVeigh
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 236

Book Description


Progress in Aeronautical Sciences

Progress in Aeronautical Sciences PDF Author: Antonio Ferri
Publisher: Elsevier
ISBN: 1483149420
Category : Technology & Engineering
Languages : en
Pages : 253

Book Description
Progress in Aeronautical Sciences, Volume 3 deals with topics in the field of aerodynamics. The book covers topics on aerodynamic design, propulsion systems, hypersonic flows laboratories, and gust research. The text is composed of four articles. The first article presents a review of the aspects of aerodynamic design of swept-winged aircraft. The second paper surveys the applications of ducted propellers. Critical reviews of experimental hypersonic facilities are provided in Chapter 3. The last paper focuses on the meteorological and aeronautical aspects of atmospheric turbulence. Aeronautical engineers, pilots, aviators, and students in the field of aerodynamic design will find this book invaluable.

General Aviation Aircraft Design

General Aviation Aircraft Design PDF Author: Snorri Gudmundsson
Publisher: Butterworth-Heinemann
ISBN: 0123973295
Category : Technology & Engineering
Languages : en
Pages : 1058

Book Description
Find the right answer the first time with this useful handbook of preliminary aircraft design. Written by an engineer with close to 20 years of design experience, General Aviation Aircraft Design: Applied Methods and Procedures provides the practicing engineer with a versatile handbook that serves as the first source for finding answers to realistic aircraft design questions. The book is structured in an "equation/derivation/solved example" format for easy access to content. Readers will find it a valuable guide to topics such as sizing of horizontal and vertical tails to minimize drag, sizing of lifting surfaces to ensure proper dynamic stability, numerical performance methods, and common faults and fixes in aircraft design. In most cases, numerical examples involve actual aircraft specs. Concepts are visually depicted by a number of useful black-and-white figures, photos, and graphs (with full-color images included in the eBook only). Broad and deep in coverage, it is intended for practicing engineers, aerospace engineering students, mathematically astute amateur aircraft designers, and anyone interested in aircraft design. - Organized by articles and structured in an "equation/derivation/solved example" format for easy access to the content you need - Numerical examples involve actual aircraft specs - Contains high-interest topics not found in other texts, including sizing of horizontal and vertical tails to minimize drag, sizing of lifting surfaces to ensure proper dynamic stability, numerical performance methods, and common faults and fixes in aircraft design - Provides a unique safety-oriented design checklist based on industry experience - Discusses advantages and disadvantages of using computational tools during the design process - Features detailed summaries of design options detailing the pros and cons of each aerodynamic solution - Includes three case studies showing applications to business jets, general aviation aircraft, and UAVs - Numerous high-quality graphics clearly illustrate the book's concepts (note: images are full-color in eBook only)

Relationship of Metal Surfaces to Heat-aging Properties of Adhesive Bonds

Relationship of Metal Surfaces to Heat-aging Properties of Adhesive Bonds PDF Author: J. M. Black
Publisher:
ISBN:
Category : Adhesives
Languages : en
Pages : 698

Book Description
A study was made to determine the probable causes of deterioration of each of several adhesives in bonds to stainless steel at temperatures from 400 to 550 degrees F. Prellminary studies of aluminum surfaces on which ions of metals used in staLnless steel were introduced showed that iron was probably catalyzing a thermal deterioration of the adhesive. The resistance of FPL-878 adhesive to thermal deterioration at 550 degrees F on steel was improved signiffcantly by treating the steel surface to be bonded with either zinc or cerium naphthenate and firing at 1,200 degrees F. The addition of manganese dioxide to the adhesive also increased its resistance to thermal deterioration. A study of the thermal-aging properties of five different chemical types of adhesives on stainless steel and alumina revealed that a phenol-nitrile rubber adhesive was superior to a phenol-epoxy adhesive on steel, but this order was reversed on alumina. These and other observations indicated probable specific relationships among the chemical structure of the adhesive, the metal adherend, and the resultant thermal stability of bonds after aging at high temperatures.

Commercial Airplane Design Principles

Commercial Airplane Design Principles PDF Author: Pasquale M. Sforza
Publisher: Elsevier
ISBN: 0124199771
Category : Technology & Engineering
Languages : en
Pages : 623

Book Description
Commercial Airplane Design Principles is a succinct, focused text covering all the information required at the preliminary stage of aircraft design: initial sizing and weight estimation, fuselage design, engine selection, aerodynamic analysis, stability and control, drag estimation, performance analysis, and economic analysis. The text places emphasis on making informed choices from an array of competing options, and developing the confidence to do so. - Shows the use of standard, empirical, and classical methods in support of the design process - Explains the preparation of a professional quality design report - Provides a sample outline of a design report - Can be used in conjunction with Sforza, Manned Spacecraft Design Principles to form a complete course in Aircraft/Spacecraft Design

Direct Numerical Simulations, Resolvent Analysis, and Flow Control of Laminar Post-stall Wakes Around Finite Tapered Swept Wings

Direct Numerical Simulations, Resolvent Analysis, and Flow Control of Laminar Post-stall Wakes Around Finite Tapered Swept Wings PDF Author: Jean Helder Marques Ribeiro
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
External flows over wings is a traditional flow of interest in aerodynamics. Over the last century, research efforts were dedicated to studying the wake patterns that form in the flows around finite wings. Among others, we can pinpoint the wing tip vortex, the separation region that develops under adverse pressure gradient, and the coherent vortical structures. Thanks to these past efforts, we were able to significantly extend our knowledge in aerodynamics, which paved the way for an impressive evolution of aircraft designs in the last century. Over the years, commercial flight became an ordinary asset in our society. More recently, small and micro air vehicles have also reached the market, being operated by individuals who hold no necessary knowledge of the complexity of the Navier-Stokes equations. The advanced knowledge currently held on flight physics has played a fundamental role in the development of aircraft designs, however, there is still room for improvement. In post-stall flow conditions, the aerodynamic performance of the wing decays considerably, making it challenging to sustain flight at high incidence angles. To enable flight in such flow conditions, it is important to develop physics-based flow control strategies capable of improving the overall aerodynamic performance of the wing and its flight stability. The main implications are reduced fuel (and energy) consumption during flight, increased aircraft range, improvements in safety and productivity of air travel, attenuation of the acoustic signature, as well as enabled capability of aircraft to fly in challenging external environments. Towards this goal, many studies have been performed to analyze and control flows over airfoils in spanwise periodic configurations. These may also be called infinite-span wings. These studies were fundamental to revealing important aspects of flow physics. However, in reality, the flows around wings are three-dimensional (3-D). In addition, modern aircraft wings are usually tapered and swept. The 3-D vortex dynamics of flows over wings has a significant influence on aircraft design, by reducing the overall lift, generating induced drag, and increasing flow unsteadiness. Thus, it is important to develop strategies to control the vortex dynamics that encompass the knowledge of the 3-D characteristics of the flow over finite, swept, and tapered wings. Especially for post-stall flow conditions, the wake dynamics around tapered swept wings is largely unexplored. It is still a challenge to understand how the wing geometry relates to the vortex formation for different aspect and taper ratios, as well as angles of attack and sweep. To design control strategies to improve aerodynamic performance for finite, swept, and tapered wings, we must go beyond the sole characterization of flow structures. In fact, the identification of perturbation dynamics is called for to modify the flow field. Three-dimensional flow control is challenging due to the high-dimensional and nonlinear nature of the flow dynamics of the wakes. Thus, it is necessary to find an appropriate actuation setup for the problem that can alter the base flow behavior. This effort can be guided by modal analysis methods. In our work, we have used resolvent analysis, a method based on the singular value decomposition (SVD) of the resolvent, which is a linear operator constructed using the Navier-Stokes equations linearized with respect to the base flow. For unsteady flows, the statistically converged time-averaged flow field is used as a base flow to construct the resolvent operator. The strength of the resolvent operator through this approach is the capability to find optimal forcing modes which amplify outputs in the flow field and give insights into the perturbed flow through the spatial response modes. The challenge within resolvent analysis is the SVD computation for large-scale resolvent operators that are generated for high-dimensional flow fields, such as three-dimensional and turbulent flows. By taking advantage of low-rank approximation of the resolvent operator, recent developments using randomized numerical linear algebra have accelerated the computation of the dominant resolvent modes. With reduced computational costs, these efforts have enabled the use of resolvent analysis in turbulent flows over spanwise periodic airfoils and expanded its applicability to triglobal problems and higher Reynolds number flows. With the randomized algorithm, we can use resolvent analysis to uncover the dynamics of 3-D flows over finite, swept, and tapered wings, supporting flow control efforts to improve their overall aerodynamic performance. The present study has shown how to develop a 3-D resolvent-based flow control over finite wings. We initiate by studying flows over finite wings and the effects of wing sweep and taper on the post-stall wake dynamics through direct numerical simulations (DNS). We consider laminar flows at chord-based Reynolds numbers of 400 and 600 with weak compressible effects at a freestream Mach number 0.1. The flows are studied around wings at angles of attack between 14 and 30 degrees with semi aspect ratios ranging from 1 to 4, sweep angles up to 50 degrees, and taper ratios from 0.27 to 1. Following a comprehensive characterization of the wake dynamics through DNS results, we extend our knowledge of the dynamics of flow perturbations by analyzing the triglobal resolvent modes. Through the identification of the optimal harmonic perturbations that can be amplified in the flow field, we develop 3-D active flow control that is shown to significantly modify the wake structures around the wings. This comprehensive investigation provides novel and unique insights that reveal the flow structures that can be amplified in the wake and modify their dynamics in post-stall flow conditions.