The Design and Validation of a Computational Model of the Human Wrist Joint PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Design and Validation of a Computational Model of the Human Wrist Joint PDF full book. Access full book title The Design and Validation of a Computational Model of the Human Wrist Joint by Afsarul Quddus Mir. Download full books in PDF and EPUB format.

The Design and Validation of a Computational Model of the Human Wrist Joint

The Design and Validation of a Computational Model of the Human Wrist Joint PDF Author: Afsarul Quddus Mir
Publisher:
ISBN:
Category :
Languages : en
Pages : 148

Book Description
Advancements in computational capabilities have allowed researchers to turn towards modeling as an efficient tool to replicate and predict outcomes of complex systems. Computational models of the musculoskeletal system have gone through various iterations with early versions employing dramatic simplifications. In this work, a three-dimensional computational model of the wrist joint was developed. It accurately recreated the skeletal structures of the hand and wrist and represented the constraints imposed by soft tissue structures like ligaments, tendons, and other surrounding tissues. It was developed to function as a tool to investigate the biomechanical contributions of structures and the kinematic response of the wrist joint. The model was created with the use of a commercially available computer-aided design software employing the rigid body modeling methodology. It was validated against three different cadaveric experimental studies which investigated changes in biomechanical response following radioscapholunate fusion and proximal row carpectomy procedures. The kinematic simulations performed by the model demonstrated quantitatively accurate responses for the range of motions for both surgical procedures. It also provided some understanding to the trends in carpal bone contact force changes observed in surgically altered specimens. The model provided additional insight into the importance of structures like the triangular fibrocartilage and the capsular retinacular structures, both of which are currently not very well understood. As better understanding of components of the wrist joint is achieved, this model could function as an important tool in preoperative planning and generating individualized treatment regiments.

The Design and Validation of a Computational Model of the Human Wrist Joint

The Design and Validation of a Computational Model of the Human Wrist Joint PDF Author: Afsarul Quddus Mir
Publisher:
ISBN:
Category :
Languages : en
Pages : 148

Book Description
Advancements in computational capabilities have allowed researchers to turn towards modeling as an efficient tool to replicate and predict outcomes of complex systems. Computational models of the musculoskeletal system have gone through various iterations with early versions employing dramatic simplifications. In this work, a three-dimensional computational model of the wrist joint was developed. It accurately recreated the skeletal structures of the hand and wrist and represented the constraints imposed by soft tissue structures like ligaments, tendons, and other surrounding tissues. It was developed to function as a tool to investigate the biomechanical contributions of structures and the kinematic response of the wrist joint. The model was created with the use of a commercially available computer-aided design software employing the rigid body modeling methodology. It was validated against three different cadaveric experimental studies which investigated changes in biomechanical response following radioscapholunate fusion and proximal row carpectomy procedures. The kinematic simulations performed by the model demonstrated quantitatively accurate responses for the range of motions for both surgical procedures. It also provided some understanding to the trends in carpal bone contact force changes observed in surgically altered specimens. The model provided additional insight into the importance of structures like the triangular fibrocartilage and the capsular retinacular structures, both of which are currently not very well understood. As better understanding of components of the wrist joint is achieved, this model could function as an important tool in preoperative planning and generating individualized treatment regiments.

Müllberge und Alternativen

Müllberge und Alternativen PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Development of a Rigid Body Computational Model for Investigation of Wrist Biomechanics

Development of a Rigid Body Computational Model for Investigation of Wrist Biomechanics PDF Author: Benjamin Judson Majors
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The wrist is one of the most complex joints in the human body. As such, the wrist joint is difficult to model due to the number of bones involved and its intricate soft tissue interactions. Many studies have attempted modeling the wrist previously; however, the majority of these studies simplify the joint into two-dimensions or idealized mechanical joints to reduce the complexity of the simulation. While these approaches still yield valuable information, the omission of a third-dimension or geometry defined movements limits the models' usefulness in predicting joint function under non-idealized conditions. Therefore, the goal of this study was to develop a computational model of the wrist joint complex using commercially available software, whereby joint motion and behavior is dictated by highly accurate three-dimensional articular contact, ligamentous constraints, muscle loads, and external perturbations only. As such, a computational model of the human wrist was created using computed tomography (CT) images of a cadaver right upper extremity. Commercially available medical imaging software and three-dimensional computer aided design (CAD) software were used to reconstruct the osteoarticular surfaces and accurately add soft tissue constraints, as well as calculate kinematic motion simulations. The model was able to reproduce physiologic motion including flexion/extension and radial/ulnar deviation. Validation of the model was achieved by comparing predicted results from the model to the results of a published cadaveric experiment that analyzed wrist function under effects of various surgical procedures. The model was used to replicate the exact testing conditions prescribed for the experiment, and the model was able to accurately reproduce the trends and, in many instances, the magnitudes of the range of motion measurements in the study. Furthermore, the model can now be used to predict the magnitudes for the joint contact forces within the wrist as well as the tension developed in ligaments in hopes locating potential areas of concern after these surgical procedures have been conducted, including further development of arthritis in the wrist and ligament breakdown.

The Design and Validation of a Computational Rigid Body Model for Study of the Radial Head

The Design and Validation of a Computational Rigid Body Model for Study of the Radial Head PDF Author: Cassandra Alan Woodcock
Publisher:
ISBN:
Category :
Languages : en
Pages : 248

Book Description
Rigid body modeling has historically been used to study various features of the elbow joint including both physical and computational models. Computational modeling provides an inexpensive, easily customizable, and effective method by which to predict and investigate the response of a physiological system to in vivo stresses and applied perturbations. Utilizing computer topography scans of a cadaveric elbow, a virtual representation of the joint was created using the commercially available MIMICS(TM) and SolidWorks(TM) software packages. Accurate 3D articular surfaces, ligamentous constraints, and joint contact parameters dictated motion. The model was validated against two cadaveric studies performed by Chanlalit et al. (2011, 2012) considering monopolar and bipolar circular radial head replacements in their effects on radiocapitellar stability and respective reliance upon lateral soft tissues, as well as a comparison of these with a novel anatomic radial head replacement system in an elbow afflicted with the "terrible triad" injury. Rigid body simulations indicated that the computational model was able to accurately recreate the translation of forces in the joint and demonstrate results similar to those presented in the cadaveric data in both the intact elbow and in unstable injury states. Trends in the resulting data were reflective of the average behavior of the cadaveric specimens while percent changes between states correlated closely with the experimental data. Information on the transposition of forces within the joint and ligament tensions gleaned from the computational model provided further insight into the stability of the elbow with a compromised radial head.

Human Hand Function

Human Hand Function PDF Author: Lynette A. Jones
Publisher: Oxford University Press
ISBN: 0195173155
Category : Medical
Languages : en
Pages : 279

Book Description
Surveying normal hand function in health individuals, this book presents a conceptual framework for analysing what is known about it. It organises human-hand research on a continuum that ranges from activities that are sensory to those with a strong motor component. It is useful for researchers in neuroscience, cognitive science, and gerontology.

Digital Human Modeling

Digital Human Modeling PDF Author: Vincent D. Duffy
Publisher: Springer
ISBN: 3540733213
Category : Computers
Languages : en
Pages : 1083

Book Description
This book constitutes the refereed proceedings of the First International Conference on Digital Human Modeling, DHM 2007, held in Beijing, China in July 2007. The papers thoroughly cover the thematic area of digital human modeling, addressing the following major topics: shape and movement modeling and anthropometry, building and applying virtual humans, medical and rehabilitation applications, as well as industrial and ergonomic applications.

Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System

Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System PDF Author: Z Jin
Publisher: Woodhead Publishing
ISBN: 0128227621
Category : Science
Languages : en
Pages : 634

Book Description
Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, Second Edition reviews how a wide range of materials are modeled and applied. Chapters cover basic concepts for modeling of biomechanics and biotribology, the fundamentals of computational modeling of biomechanics in the musculoskeletal system, finite element modeling in the musculoskeletal system, computational modeling from a cells and tissues perspective, and computational modeling of the biomechanics and biotribology interactions, looking at complex joint structures. This book is a comprehensive resource for professionals in the biomedical market, materials scientists and biomechanical engineers, and academics in related fields. This important new edition provides an up-to-date overview of the most recent research and developments involving hydroxyapatite as a key material in medicine and its application, including new content on novel technologies, biomorphic hydroxyapatite and more. - Provides detailed, introductory coverage of modeling of cells and tissues, modeling of biomaterials and interfaces, biomechanics and biotribology - Discusses applications of modeling for joint replacements and applications of computational modeling in tissue engineering - Offers a holistic perspective, from cells and small ligaments to complex joint interactions

Computational Biomechanics

Computational Biomechanics PDF Author: Kozaburo Hayashi
Publisher: Springer Science & Business Media
ISBN: 4431669515
Category : Medical
Languages : en
Pages : 278

Book Description
The combination of readily available computing power and progress in numerical techniques has made nonlinear systems - the kind that only a few years ago were ignored as too complex - open to analysis for the first time. Now realistic models of living systems incorporating the nonlinear variation and anisotropic nature of physical properties can be solved numerically on modern computers to give realistically usable results. This has opened up new and exciting possibilities for the fusing of ideas from physiology and engineering in the burgeoning new field that is biomechanics. Computational Biomechanics presents pioneering work focusing on the areas of orthopedic and circulatory mechanics, using experimental results to confirm or improve the relevant mathematical models and parameters. Together with two companion volumes, Biomechanics: Functional Adaptation and Remodeling and the Data Book on Mechanical Properties of Living Cells, Tissues, and Organs, this monograph will prove invaluable to those working in fields ranging from medical science and clinical medicine to biomedical engineering and applied mechanics.

21st Century Kinematics

21st Century Kinematics PDF Author: J. Michael McCarthy
Publisher: Springer Science & Business Media
ISBN: 1447145100
Category : Technology & Engineering
Languages : en
Pages : 251

Book Description
21st Century Kinematics focuses on algebraic problems in the analysis and synthesis of mechanisms and robots, compliant mechanisms, cable-driven systems and protein kinematics. The specialist contributors provide the background for a series of presentations at the 2012 NSF Workshop. The text shows how the analysis and design of innovative mechanical systems yield increasingly complex systems of polynomials, characteristic of those systems. In doing so, it takes advantage of increasingly sophisticated computational tools developed for numerical algebraic geometry and demonstrates the now routine derivation of polynomial systems dwarfing the landmark problems of even the recent past. The 21st Century Kinematics workshop echoes the NSF-supported 1963 Yale Mechanisms Teachers Conference that taught a generation of university educators the fundamental principles of kinematic theory. As such these proceedings will provide admirable supporting theory for a graduate course in modern kinematics and should be of considerable interest to researchers in mechanical design, robotics or protein kinematics or who have a broader interest in algebraic geometry and its applications.

Theoretical and Practical Advances in Computer-based Educational Measurement

Theoretical and Practical Advances in Computer-based Educational Measurement PDF Author: Bernard P. Veldkamp
Publisher: Springer
ISBN: 3030184803
Category : Education
Languages : en
Pages : 399

Book Description
This open access book presents a large number of innovations in the world of operational testing. It brings together different but related areas and provides insight in their possibilities, their advantages and drawbacks. The book not only addresses improvements in the quality of educational measurement, innovations in (inter)national large scale assessments, but also several advances in psychometrics and improvements in computerized adaptive testing, and it also offers examples on the impact of new technology in assessment. Due to its nature, the book will appeal to a broad audience within the educational measurement community. It contributes to both theoretical knowledge and also pays attention to practical implementation of innovations in testing technology.