Author: Theodore Wilbur Anderson
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 890
Book Description
The Collected Papers of T.W. Anderson, 1943-1985
Author: Theodore Wilbur Anderson
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 890
Book Description
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 890
Book Description
The Collected Papers of T. W. Anderson: 1943 - 1985, 2 Volume Set
Author: Theodore Wilbur Anderson
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 888
Book Description
These collected papers comprise the 109 research papers published by T.W.Anderson from 1943 to 1985. They cover a wide area of probability, statistics, econometrics, and matrix theory, including multivariate statistics and time series analysis.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 888
Book Description
These collected papers comprise the 109 research papers published by T.W.Anderson from 1943 to 1985. They cover a wide area of probability, statistics, econometrics, and matrix theory, including multivariate statistics and time series analysis.
Advanced Econometric Theory
Author: John Chipman
Publisher: Routledge
ISBN: 1134340443
Category : Business & Economics
Languages : en
Pages : 383
Book Description
When learning econometrics, what better way than to be taught by one of its masters. In this significant new volume, John Chipman, the eminence grise of econometrics, presents his classic lectures in econometric theory. Starting with the linear regression model, least squares, Gauss-Markov theory and the first principals of econometrics, this book guides the introductory student to an advanced stage of ability. The text covers multicollinearity and reduced-rank estimation, the treatment of linear restrictions and minimax estimation. Also included are chapters on the autocorrelation of residuals and simultaneous-equation estimation. By the end of the text, students will have a solid grounding in econometrics. Despite the frequent complexity of the subject matter, Chipman's clear explanations, concise prose and sharp analysis make this book stand out from others in the field. With mathematical rigor sharpened by a lifetime of econometric analysis, this significant volume is sure to become a seminal and indispensable text in this area.
Publisher: Routledge
ISBN: 1134340443
Category : Business & Economics
Languages : en
Pages : 383
Book Description
When learning econometrics, what better way than to be taught by one of its masters. In this significant new volume, John Chipman, the eminence grise of econometrics, presents his classic lectures in econometric theory. Starting with the linear regression model, least squares, Gauss-Markov theory and the first principals of econometrics, this book guides the introductory student to an advanced stage of ability. The text covers multicollinearity and reduced-rank estimation, the treatment of linear restrictions and minimax estimation. Also included are chapters on the autocorrelation of residuals and simultaneous-equation estimation. By the end of the text, students will have a solid grounding in econometrics. Despite the frequent complexity of the subject matter, Chipman's clear explanations, concise prose and sharp analysis make this book stand out from others in the field. With mathematical rigor sharpened by a lifetime of econometric analysis, this significant volume is sure to become a seminal and indispensable text in this area.
Regression Analysis by Example
Author: Samprit Chatterjee
Publisher: John Wiley & Sons
ISBN: 1118456246
Category : Mathematics
Languages : en
Pages : 375
Book Description
Praise for the Fourth Edition: "This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable." —Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression. The book now includes a new chapter on the detection and correction of multicollinearity, while also showcasing the use of the discussed methods on newly added data sets from the fields of engineering, medicine, and business. The Fifth Edition also explores additional topics, including: Surrogate ridge regression Fitting nonlinear models Errors in variables ANOVA for designed experiments Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions, the required assumptions, and the evaluated success of each technique. Additionally, methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R. Regression Analysis by Example, Fifth Edition is suitable for anyone with an understanding of elementary statistics.
Publisher: John Wiley & Sons
ISBN: 1118456246
Category : Mathematics
Languages : en
Pages : 375
Book Description
Praise for the Fourth Edition: "This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable." —Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression. The book now includes a new chapter on the detection and correction of multicollinearity, while also showcasing the use of the discussed methods on newly added data sets from the fields of engineering, medicine, and business. The Fifth Edition also explores additional topics, including: Surrogate ridge regression Fitting nonlinear models Errors in variables ANOVA for designed experiments Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions, the required assumptions, and the evaluated success of each technique. Additionally, methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R. Regression Analysis by Example, Fifth Edition is suitable for anyone with an understanding of elementary statistics.
Clinical Trial Design
Author: Guosheng Yin
Publisher: John Wiley & Sons
ISBN: 1118183320
Category : Medical
Languages : en
Pages : 368
Book Description
A balanced treatment of the theories, methodologies, and design issues involved in clinical trials using statistical methods There has been enormous interest and development in Bayesian adaptive designs, especially for early phases of clinical trials. However, for phase III trials, frequentist methods still play a dominant role through controlling type I and type II errors in the hypothesis testing framework. From practical perspectives, Clinical Trial Design: Bayesian and Frequentist Adaptive Methods provides comprehensive coverage of both Bayesian and frequentist approaches to all phases of clinical trial design. Before underpinning various adaptive methods, the book establishes an overview of the fundamentals of clinical trials as well as a comparison of Bayesian and frequentist statistics. Recognizing that clinical trial design is one of the most important and useful skills in the pharmaceutical industry, this book provides detailed discussions on a variety of statistical designs, their properties, and operating characteristics for phase I, II, and III clinical trials as well as an introduction to phase IV trials. Many practical issues and challenges arising in clinical trials are addressed. Additional topics of coverage include: Risk and benefit analysis for toxicity and efficacy trade-offs Bayesian predictive probability trial monitoring Bayesian adaptive randomization Late onset toxicity and response Dose finding in drug combination trials Targeted therapy designs The author utilizes cutting-edge clinical trial designs and statistical methods that have been employed at the world's leading medical centers as well as in the pharmaceutical industry. The software used throughout the book is freely available on the book's related website, equipping readers with the necessary tools for designing clinical trials. Clinical Trial Design is an excellent book for courses on the topic at the graduate level. The book also serves as a valuable reference for statisticians and biostatisticians in the pharmaceutical industry as well as for researchers and practitioners who design, conduct, and monitor clinical trials in their everyday work.
Publisher: John Wiley & Sons
ISBN: 1118183320
Category : Medical
Languages : en
Pages : 368
Book Description
A balanced treatment of the theories, methodologies, and design issues involved in clinical trials using statistical methods There has been enormous interest and development in Bayesian adaptive designs, especially for early phases of clinical trials. However, for phase III trials, frequentist methods still play a dominant role through controlling type I and type II errors in the hypothesis testing framework. From practical perspectives, Clinical Trial Design: Bayesian and Frequentist Adaptive Methods provides comprehensive coverage of both Bayesian and frequentist approaches to all phases of clinical trial design. Before underpinning various adaptive methods, the book establishes an overview of the fundamentals of clinical trials as well as a comparison of Bayesian and frequentist statistics. Recognizing that clinical trial design is one of the most important and useful skills in the pharmaceutical industry, this book provides detailed discussions on a variety of statistical designs, their properties, and operating characteristics for phase I, II, and III clinical trials as well as an introduction to phase IV trials. Many practical issues and challenges arising in clinical trials are addressed. Additional topics of coverage include: Risk and benefit analysis for toxicity and efficacy trade-offs Bayesian predictive probability trial monitoring Bayesian adaptive randomization Late onset toxicity and response Dose finding in drug combination trials Targeted therapy designs The author utilizes cutting-edge clinical trial designs and statistical methods that have been employed at the world's leading medical centers as well as in the pharmaceutical industry. The software used throughout the book is freely available on the book's related website, equipping readers with the necessary tools for designing clinical trials. Clinical Trial Design is an excellent book for courses on the topic at the graduate level. The book also serves as a valuable reference for statisticians and biostatisticians in the pharmaceutical industry as well as for researchers and practitioners who design, conduct, and monitor clinical trials in their everyday work.
Multistate Systems Reliability Theory with Applications
Author: Bent Natvig
Publisher: John Wiley & Sons
ISBN: 0470977132
Category : Mathematics
Languages : en
Pages : 203
Book Description
Most books in reliability theory are dealing with a description of component and system states as binary: functioning or failed. However, many systems are composed of multi-state components with different performance levels and several failure modes. There is a great need in a series of applications to have a more refined description of these states, for instance, the amount of power generated by an electrical power generation system or the amount of gas that can be delivered through an offshore gas pipeline network. This book provides a descriptive account of various types of multistate system, bound-for multistate systems, probabilistic modeling of monitoring and maintenance of multistate systems with components along with examples of applications. Key Features: Looks at modern multistate reliability theory with applications covering a refined description of components and system states. Presents new research, such as Bayesian assessment of system availabilities and measures of component importance. Complements the methodological description with two substantial case studies. Reliability engineers and students involved in the field of reliability, applied mathematics and probability theory will benefit from this book.
Publisher: John Wiley & Sons
ISBN: 0470977132
Category : Mathematics
Languages : en
Pages : 203
Book Description
Most books in reliability theory are dealing with a description of component and system states as binary: functioning or failed. However, many systems are composed of multi-state components with different performance levels and several failure modes. There is a great need in a series of applications to have a more refined description of these states, for instance, the amount of power generated by an electrical power generation system or the amount of gas that can be delivered through an offshore gas pipeline network. This book provides a descriptive account of various types of multistate system, bound-for multistate systems, probabilistic modeling of monitoring and maintenance of multistate systems with components along with examples of applications. Key Features: Looks at modern multistate reliability theory with applications covering a refined description of components and system states. Presents new research, such as Bayesian assessment of system availabilities and measures of component importance. Complements the methodological description with two substantial case studies. Reliability engineers and students involved in the field of reliability, applied mathematics and probability theory will benefit from this book.
The EM Algorithm and Extensions
Author: Geoffrey J. McLachlan
Publisher: John Wiley & Sons
ISBN: 0470191600
Category : Mathematics
Languages : en
Pages : 399
Book Description
The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented. While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include: New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm New results on convergence, including convergence of the EM algorithm in constrained parameter spaces Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.
Publisher: John Wiley & Sons
ISBN: 0470191600
Category : Mathematics
Languages : en
Pages : 399
Book Description
The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented. While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include: New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm New results on convergence, including convergence of the EM algorithm in constrained parameter spaces Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.
The Fitness of Information
Author: Chaomei Chen
Publisher: John Wiley & Sons
ISBN: 1118594207
Category : Mathematics
Languages : en
Pages : 271
Book Description
Theories and practices to assess critical information in a complex adaptive system Organized for readers to follow along easily, The Fitness of Information: Quantitative Assessments of Critical Evidence provides a structured outline of the key challenges in assessing crucial information in a complex adaptive system. Illustrating a variety of computational and explanatory challenges, the book demonstrates principles and practical implications of exploring and assessing the fitness of information in an extensible framework of adaptive landscapes. The book’s first three chapters introduce fundamental principles and practical examples in connection to the nature of aesthetics, mental models, and the subjectivity of evidence. In particular, the underlying question is how these issues can be addressed quantitatively, not only computationally but also explanatorily. The next chapter illustrates how one can reduce the level of complexity in understanding the structure and dynamics of scientific knowledge through the design and use of the CiteSpace system for visualizing and analyzing emerging trends in scientific literature. The following two chapters explain the concepts of structural variation and the fitness of information in a framework that builds on the idea of fitness landscape originally introduced to study population evolution. The final chapter presents a dual-map overlay technique and demonstrates how it supports a variety of analytic tasks for a new type of portfolio analysis. The Fitness of Information: Quantitative Assessments of Critical Evidence also features: In-depth case studies and examples that characterize far-reaching concepts, illustrate underlying principles, and demonstrate profound challenges and complexities at various levels of analytic reasoning Wide-ranging topics that underline the common theme, from the subjectivity of evidence in criminal trials to detecting early signs of critical transitions and mechanisms behind radical patents An extensible and unifying framework for visual analytics by transforming analytic reasoning tasks to the assessment of critical evidence The Fitness of Information: Quantitative Assessments of Critical Evidence is a suitable reference for researchers, analysts, and practitioners who are interested in analyzing evidence and making decisions with incomplete, uncertain, and even conflicting information. The book is also an excellent textbook for upper-undergraduate and graduate-level courses on visual analytics, information visualization, and business analytics and decision support systems.
Publisher: John Wiley & Sons
ISBN: 1118594207
Category : Mathematics
Languages : en
Pages : 271
Book Description
Theories and practices to assess critical information in a complex adaptive system Organized for readers to follow along easily, The Fitness of Information: Quantitative Assessments of Critical Evidence provides a structured outline of the key challenges in assessing crucial information in a complex adaptive system. Illustrating a variety of computational and explanatory challenges, the book demonstrates principles and practical implications of exploring and assessing the fitness of information in an extensible framework of adaptive landscapes. The book’s first three chapters introduce fundamental principles and practical examples in connection to the nature of aesthetics, mental models, and the subjectivity of evidence. In particular, the underlying question is how these issues can be addressed quantitatively, not only computationally but also explanatorily. The next chapter illustrates how one can reduce the level of complexity in understanding the structure and dynamics of scientific knowledge through the design and use of the CiteSpace system for visualizing and analyzing emerging trends in scientific literature. The following two chapters explain the concepts of structural variation and the fitness of information in a framework that builds on the idea of fitness landscape originally introduced to study population evolution. The final chapter presents a dual-map overlay technique and demonstrates how it supports a variety of analytic tasks for a new type of portfolio analysis. The Fitness of Information: Quantitative Assessments of Critical Evidence also features: In-depth case studies and examples that characterize far-reaching concepts, illustrate underlying principles, and demonstrate profound challenges and complexities at various levels of analytic reasoning Wide-ranging topics that underline the common theme, from the subjectivity of evidence in criminal trials to detecting early signs of critical transitions and mechanisms behind radical patents An extensible and unifying framework for visual analytics by transforming analytic reasoning tasks to the assessment of critical evidence The Fitness of Information: Quantitative Assessments of Critical Evidence is a suitable reference for researchers, analysts, and practitioners who are interested in analyzing evidence and making decisions with incomplete, uncertain, and even conflicting information. The book is also an excellent textbook for upper-undergraduate and graduate-level courses on visual analytics, information visualization, and business analytics and decision support systems.
Multivariate Density Estimation
Author: David W. Scott
Publisher: John Wiley & Sons
ISBN: 1118575482
Category : Mathematics
Languages : en
Pages : 381
Book Description
Clarifies modern data analysis through nonparametric density estimation for a complete working knowledge of the theory and methods Featuring a thoroughly revised presentation, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition maintains an intuitive approach to the underlying methodology and supporting theory of density estimation. Including new material and updated research in each chapter, the Second Edition presents additional clarification of theoretical opportunities, new algorithms, and up-to-date coverage of the unique challenges presented in the field of data analysis. The new edition focuses on the various density estimation techniques and methods that can be used in the field of big data. Defining optimal nonparametric estimators, the Second Edition demonstrates the density estimation tools to use when dealing with various multivariate structures in univariate, bivariate, trivariate, and quadrivariate data analysis. Continuing to illustrate the major concepts in the context of the classical histogram, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition also features: Over 150 updated figures to clarify theoretical results and to show analyses of real data sets An updated presentation of graphic visualization using computer software such as R A clear discussion of selections of important research during the past decade, including mixture estimation, robust parametric modeling algorithms, and clustering More than 130 problems to help readers reinforce the main concepts and ideas presented Boxed theorems and results allowing easy identification of crucial ideas Figures in color in the digital versions of the book A website with related data sets Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition is an ideal reference for theoretical and applied statisticians, practicing engineers, as well as readers interested in the theoretical aspects of nonparametric estimation and the application of these methods to multivariate data. The Second Edition is also useful as a textbook for introductory courses in kernel statistics, smoothing, advanced computational statistics, and general forms of statistical distributions.
Publisher: John Wiley & Sons
ISBN: 1118575482
Category : Mathematics
Languages : en
Pages : 381
Book Description
Clarifies modern data analysis through nonparametric density estimation for a complete working knowledge of the theory and methods Featuring a thoroughly revised presentation, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition maintains an intuitive approach to the underlying methodology and supporting theory of density estimation. Including new material and updated research in each chapter, the Second Edition presents additional clarification of theoretical opportunities, new algorithms, and up-to-date coverage of the unique challenges presented in the field of data analysis. The new edition focuses on the various density estimation techniques and methods that can be used in the field of big data. Defining optimal nonparametric estimators, the Second Edition demonstrates the density estimation tools to use when dealing with various multivariate structures in univariate, bivariate, trivariate, and quadrivariate data analysis. Continuing to illustrate the major concepts in the context of the classical histogram, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition also features: Over 150 updated figures to clarify theoretical results and to show analyses of real data sets An updated presentation of graphic visualization using computer software such as R A clear discussion of selections of important research during the past decade, including mixture estimation, robust parametric modeling algorithms, and clustering More than 130 problems to help readers reinforce the main concepts and ideas presented Boxed theorems and results allowing easy identification of crucial ideas Figures in color in the digital versions of the book A website with related data sets Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition is an ideal reference for theoretical and applied statisticians, practicing engineers, as well as readers interested in the theoretical aspects of nonparametric estimation and the application of these methods to multivariate data. The Second Edition is also useful as a textbook for introductory courses in kernel statistics, smoothing, advanced computational statistics, and general forms of statistical distributions.
Quantile Regression
Author: Cristina Davino
Publisher: John Wiley & Sons
ISBN: 1118752716
Category : Mathematics
Languages : en
Pages : 288
Book Description
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensive description of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and followed by applications using real data. Quantile Regression: Presents a complete treatment of quantile regression methods, including, estimation, inference issues and application of methods. Delivers a balance between methodolgy and application Offers an overview of the recent developments in the quantile regression framework and why to use quantile regression in a variety of areas such as economics, finance and computing. Features a supporting website (www.wiley.com/go/quantile_regression) hosting datasets along with R, Stata and SAS software code. Researchers and PhD students in the field of statistics, economics, econometrics, social and environmental science and chemistry will benefit from this book.
Publisher: John Wiley & Sons
ISBN: 1118752716
Category : Mathematics
Languages : en
Pages : 288
Book Description
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensive description of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and followed by applications using real data. Quantile Regression: Presents a complete treatment of quantile regression methods, including, estimation, inference issues and application of methods. Delivers a balance between methodolgy and application Offers an overview of the recent developments in the quantile regression framework and why to use quantile regression in a variety of areas such as economics, finance and computing. Features a supporting website (www.wiley.com/go/quantile_regression) hosting datasets along with R, Stata and SAS software code. Researchers and PhD students in the field of statistics, economics, econometrics, social and environmental science and chemistry will benefit from this book.