Author: Albert Harris Wilson
Publisher:
ISBN:
Category : Forms, Quadratic
Languages : en
Pages : 44
Book Description
The Canonical Types of Nets of Modular Conics ...
Author: Albert Harris Wilson
Publisher:
ISBN:
Category : Forms, Quadratic
Languages : en
Pages : 44
Book Description
Publisher:
ISBN:
Category : Forms, Quadratic
Languages : en
Pages : 44
Book Description
History of the Theory of Numbers
Author: Leonard Eugene Dickson
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 332
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 332
Book Description
History of the Theory of Numbers
Author: Leonard Eugene Dickson
Publisher: University of Pennsylvania Press
ISBN: 9780821819388
Category : Mathematics
Languages : en
Pages : 328
Book Description
Dickson's History is truly a monumental account of the development of one of the oldest and most important areas of mathematics. It is remarkable today to think that such a complete history could even be conceived. That Dickson was able to accomplish such a feat is attested to by the fact that his History has become the standard reference for number theory up to that time. One need only look at later classics, such as Hardy and Wright, where Dickson's History is frequently cited, to see its importance. The book is divided into three volumes by topic. In scope, the coverage is encyclopedic, leaving very little out. It is interesting to see the topics being resuscitated today that are treated in detail in Dickson. The first volume of Dickson's History covers the related topics of divisibility and primality. It begins with a description of the development of our understanding of perfect numbers. Other standard topics, such as Fermat's theorems, primitive roots, counting divisors, the Möbius function, and prime numbers themselves are treated. Dickson, in this thoroughness, also includes less workhorse subjects, such as methods of factoring, divisibility of factorials and properties of the digits of numbers. Concepts, results and citations are numerous. This second volume is a comprehensive treatment of Diophantine analysis. Besides the familiar cases of Diophantine equations, this rubric also covers partitions, representations as a sum of two, three, four or $n$ squares, Waring's problem in general and Hilbert's solution of it, and perfect squares in artihmetical and geometrical progressions. Of course, many important Diophantine equations, such as Pell's equation, and classes of equations, such as quadratic, cubic and quartic equations, are treated in detail. As usual with Dickson, the account is encyclopedic and the references are numerous. The last volume of Dickson's History is the most modern, covering quadratic and higher forms. The treatment here is more general than in Volume II, which, in a sense, is more concerned with special cases. Indeed, this volume chiefly presents methods of attacking whole classes of problems. Again, Dickson is exhaustive with references and citations.
Publisher: University of Pennsylvania Press
ISBN: 9780821819388
Category : Mathematics
Languages : en
Pages : 328
Book Description
Dickson's History is truly a monumental account of the development of one of the oldest and most important areas of mathematics. It is remarkable today to think that such a complete history could even be conceived. That Dickson was able to accomplish such a feat is attested to by the fact that his History has become the standard reference for number theory up to that time. One need only look at later classics, such as Hardy and Wright, where Dickson's History is frequently cited, to see its importance. The book is divided into three volumes by topic. In scope, the coverage is encyclopedic, leaving very little out. It is interesting to see the topics being resuscitated today that are treated in detail in Dickson. The first volume of Dickson's History covers the related topics of divisibility and primality. It begins with a description of the development of our understanding of perfect numbers. Other standard topics, such as Fermat's theorems, primitive roots, counting divisors, the Möbius function, and prime numbers themselves are treated. Dickson, in this thoroughness, also includes less workhorse subjects, such as methods of factoring, divisibility of factorials and properties of the digits of numbers. Concepts, results and citations are numerous. This second volume is a comprehensive treatment of Diophantine analysis. Besides the familiar cases of Diophantine equations, this rubric also covers partitions, representations as a sum of two, three, four or $n$ squares, Waring's problem in general and Hilbert's solution of it, and perfect squares in artihmetical and geometrical progressions. Of course, many important Diophantine equations, such as Pell's equation, and classes of equations, such as quadratic, cubic and quartic equations, are treated in detail. As usual with Dickson, the account is encyclopedic and the references are numerous. The last volume of Dickson's History is the most modern, covering quadratic and higher forms. The treatment here is more general than in Volume II, which, in a sense, is more concerned with special cases. Indeed, this volume chiefly presents methods of attacking whole classes of problems. Again, Dickson is exhaustive with references and citations.
Carnegie Institution of Washington Publication
American Journal of Mathematics
The American Mathematical Monthly
Author:
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 614
Book Description
Includes section "Recent publications."
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 614
Book Description
Includes section "Recent publications."
Bulletin of the American Mathematical Society
Author: American Mathematical Society
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 618
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 618
Book Description
Bulletin (new Series) of the American Mathematical Society
History of the Theory of Numbers, Volume III
Author: Leonard Eugene Dickson
Publisher: Courier Corporation
ISBN: 0486442349
Category : Mathematics
Languages : en
Pages : 325
Book Description
The three-volume series History of the Theory of Numbers is the work of the distinguished mathematician Leonard Eugene Dickson, who taught at the University of Chicago for four decades and is celebrated for his many contributions to number theory and group theory. This final volume in the series, which is suitable for upper-level undergraduates and graduate students, is devoted to quadratic and higher forms. It can be read independently of the preceding volumes, which explore divisibility and primality and diophantine analysis. Topics include reduction and equivalence of binary quadratic forms and representation of integers; composition of binary quadratic forms; the composition of orders and genera; irregular determinants; classes of binary quadratic forms with integral coefficients; binary quadratic forms whose coefficients are complete integers or integers of a field; classes of binary quadratic forms with complex integral coefficients; ternary and quaternary quadratic forms; cubic forms in three or more variables; binary hermitian forms; bilinear forms, matrices, and linear substitutions; congruencial theory of forms; and many other related topics. Indexes of authors cited and subjects appear at the end of the book.
Publisher: Courier Corporation
ISBN: 0486442349
Category : Mathematics
Languages : en
Pages : 325
Book Description
The three-volume series History of the Theory of Numbers is the work of the distinguished mathematician Leonard Eugene Dickson, who taught at the University of Chicago for four decades and is celebrated for his many contributions to number theory and group theory. This final volume in the series, which is suitable for upper-level undergraduates and graduate students, is devoted to quadratic and higher forms. It can be read independently of the preceding volumes, which explore divisibility and primality and diophantine analysis. Topics include reduction and equivalence of binary quadratic forms and representation of integers; composition of binary quadratic forms; the composition of orders and genera; irregular determinants; classes of binary quadratic forms with integral coefficients; binary quadratic forms whose coefficients are complete integers or integers of a field; classes of binary quadratic forms with complex integral coefficients; ternary and quaternary quadratic forms; cubic forms in three or more variables; binary hermitian forms; bilinear forms, matrices, and linear substitutions; congruencial theory of forms; and many other related topics. Indexes of authors cited and subjects appear at the end of the book.
History of the Theory of Numbers: Quadratic and higher forms, with a chapter on the class number, by G. H. Cresse
Author: Leonard Eugene Dickson
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 328
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 328
Book Description