The Calculus of Braids PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Calculus of Braids PDF full book. Access full book title The Calculus of Braids by Patrick Dehornoy. Download full books in PDF and EPUB format.

The Calculus of Braids

The Calculus of Braids PDF Author: Patrick Dehornoy
Publisher: Cambridge University Press
ISBN: 1108843948
Category : Mathematics
Languages : en
Pages : 259

Book Description
This introduction to braid groups keeps prerequisites to a minimum, while discussing their rich mathematical properties and applications.

The Calculus of Braids

The Calculus of Braids PDF Author: Patrick Dehornoy
Publisher: Cambridge University Press
ISBN: 1108843948
Category : Mathematics
Languages : en
Pages : 259

Book Description
This introduction to braid groups keeps prerequisites to a minimum, while discussing their rich mathematical properties and applications.

Knots, Links, Braids and 3-Manifolds

Knots, Links, Braids and 3-Manifolds PDF Author: Viktor Vasilʹevich Prasolov
Publisher: American Mathematical Soc.
ISBN: 0821808982
Category : Mathematics
Languages : en
Pages : 250

Book Description
This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. The mathematical prerequisites are minimal compared to other monographs in this area. Numerous figures and problems make this book suitable as a graduate level course text or for self-study.

Braids, Links, and Mapping Class Groups

Braids, Links, and Mapping Class Groups PDF Author: Joan S. Birman
Publisher: Princeton University Press
ISBN: 9780691081496
Category : Crafts & Hobbies
Languages : en
Pages : 244

Book Description
The central theme of this study is Artin's braid group and the many ways that the notion of a braid has proved to be important in low-dimensional topology. In Chapter 1 the author is concerned with the concept of a braid as a group of motions of points in a manifold. She studies structural and algebraic properties of the braid groups of two manifolds, and derives systems of defining relations for the braid groups of the plane and sphere. In Chapter 2 she focuses on the connections between the classical braid group and the classical knot problem. After reviewing basic results she proceeds to an exploration of some possible implications of the Garside and Markov theorems. Chapter 3 offers discussion of matrix representations of the free group and of subgroups of the automorphism group of the free group. These ideas come to a focus in the difficult open question of whether Burau's matrix representation of the braid group is faithful. Chapter 4 is a broad view of recent results on the connections between braid groups and mapping class groups of surfaces. Chapter 5 contains a brief discussion of the theory of "plats." Research problems are included in an appendix.

Knots, Braids, and Mapping Class Groups -- Papers Dedicated to Joan S. Birman

Knots, Braids, and Mapping Class Groups -- Papers Dedicated to Joan S. Birman PDF Author: Jane Gilman
Publisher: American Mathematical Soc.
ISBN: 0821829661
Category : Mathematics
Languages : en
Pages : 200

Book Description
There are a number of specialties in low-dimensional topology that can find in their ``family tree'' a common ancestry in the theory of surface mappings. These include knot theory as studied through the use of braid representations, and 3-manifolds as studied through the use of Heegaard splittings. The study of the surface mapping class group (the modular group) is of course a rich subject in its own right, with relations to many different fields of mathematics and theoreticalphysics. However, its most direct and remarkable manifestation is probably in the vast area of low-dimensional topology. Although the scene of this area has been changed dramatically and experienced significant expansion since the original publication of Professor Joan Birman's seminal work,Braids, Links,and Mapping Class Groups(Princeton University Press), she brought together mathematicians whose research span many specialties, all of common lineage. The topics covered are quite diverse. Yet they reflect well the aim and spirit of the conference: to explore how these various specialties in low-dimensional topology have diverged in the past 20-25 years, as well as to explore common threads and potential future directions of development. This volume is dedicated to Joan Birman by hercolleagues with deep admiration and appreciation of her contribution to low-dimensional topology.

Knots 90

Knots 90 PDF Author: Akio Kawauchi
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110875918
Category : Mathematics
Languages : en
Pages : 652

Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Encyclopaedia of Mathematics

Encyclopaedia of Mathematics PDF Author: M. Hazewinkel
Publisher: Springer
ISBN: 1489937978
Category : Mathematics
Languages : en
Pages : 927

Book Description


Encyclopaedia of Mathematics

Encyclopaedia of Mathematics PDF Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9401512396
Category : Mathematics
Languages : en
Pages : 496

Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathema tics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclo paedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977 - 1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivision has been used). The main requirement for these articles has been that they should give a reason ably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of pre cise theorems with detailed definitions and technical details on how to carry out proofs and con structions.

Braids

Braids PDF Author: Joan S. Birman
Publisher: American Mathematical Soc.
ISBN: 0821850881
Category : Mathematics
Languages : en
Pages : 766

Book Description
Contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Artin's Braid Group, held at the University of California, Santa Cruz, in July 1986. This work is suitable for graduate students and researchers who wish to learn more about braids, as well as more experienced workers in this area.

Braids, Links, and Mapping Class Groups. (AM-82), Volume 82

Braids, Links, and Mapping Class Groups. (AM-82), Volume 82 PDF Author: Joan S. Birman
Publisher: Princeton University Press
ISBN: 1400881420
Category : Mathematics
Languages : en
Pages : 241

Book Description
The central theme of this study is Artin's braid group and the many ways that the notion of a braid has proved to be important in low-dimensional topology. In Chapter 1 the author is concerned with the concept of a braid as a group of motions of points in a manifold. She studies structural and algebraic properties of the braid groups of two manifolds, and derives systems of defining relations for the braid groups of the plane and sphere. In Chapter 2 she focuses on the connections between the classical braid group and the classical knot problem. After reviewing basic results she proceeds to an exploration of some possible implications of the Garside and Markov theorems. Chapter 3 offers discussion of matrix representations of the free group and of subgroups of the automorphism group of the free group. These ideas come to a focus in the difficult open question of whether Burau's matrix representation of the braid group is faithful. Chapter 4 is a broad view of recent results on the connections between braid groups and mapping class groups of surfaces. Chapter 5 contains a brief discussion of the theory of "plats." Research problems are included in an appendix.

Gödel, Escher, Bach

Gödel, Escher, Bach PDF Author: Douglas R. Hofstadter
Publisher: Penguin Group(CA)
ISBN: 9780140289206
Category : Art and music
Languages : en
Pages : 832

Book Description
'What is a self and how can a self come out of inanimate matter?' This is the riddle that drove Douglas Hofstadter to write this extraordinary book. In order to impart his original and personal view on the core mystery of human existence - our intangible sensation of 'I'-ness - Hofstadter defines the playful yet seemingly paradoxical notion of 'strange loop', and explicates this idea using analogies from many disciplines.