The Breadth of Symplectic and Poisson Geometry PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Breadth of Symplectic and Poisson Geometry PDF full book. Access full book title The Breadth of Symplectic and Poisson Geometry by Jerrold E. Marsden. Download full books in PDF and EPUB format.

The Breadth of Symplectic and Poisson Geometry

The Breadth of Symplectic and Poisson Geometry PDF Author: Jerrold E. Marsden
Publisher: Springer Science & Business Media
ISBN: 0817644199
Category : Mathematics
Languages : en
Pages : 666

Book Description
* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics

The Breadth of Symplectic and Poisson Geometry

The Breadth of Symplectic and Poisson Geometry PDF Author: Jerrold E. Marsden
Publisher: Springer Science & Business Media
ISBN: 0817644199
Category : Mathematics
Languages : en
Pages : 666

Book Description
* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics

Poisson Geometry in Mathematics and Physics

Poisson Geometry in Mathematics and Physics PDF Author: Giuseppe Dito
Publisher: American Mathematical Soc.
ISBN: 0821844237
Category : Mathematics
Languages : en
Pages : 330

Book Description
This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.

Introduction to Symplectic Geometry

Introduction to Symplectic Geometry PDF Author: Jean-Louis Koszul
Publisher: Springer
ISBN: 9811339872
Category : Science
Languages : en
Pages : 166

Book Description
This introductory book offers a unique and unified overview of symplectic geometry, highlighting the differential properties of symplectic manifolds. It consists of six chapters: Some Algebra Basics, Symplectic Manifolds, Cotangent Bundles, Symplectic G-spaces, Poisson Manifolds, and A Graded Case, concluding with a discussion of the differential properties of graded symplectic manifolds of dimensions (0,n). It is a useful reference resource for students and researchers interested in geometry, group theory, analysis and differential equations.This book is also inspiring in the emerging field of Geometric Science of Information, in particular the chapter on Symplectic G-spaces, where Jean-Louis Koszul develops Jean-Marie Souriau's tools related to the non-equivariant case of co-adjoint action on Souriau’s moment map through Souriau’s Cocycle, opening the door to Lie Group Machine Learning with Souriau-Fisher metric.

Higher Structures in Geometry and Physics

Higher Structures in Geometry and Physics PDF Author: Alberto S. Cattaneo
Publisher: Springer Science & Business Media
ISBN: 081764735X
Category : Mathematics
Languages : en
Pages : 371

Book Description
This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics— such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics— and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. The volume is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures.

Symplectic Geometry

Symplectic Geometry PDF Author: Helmut Hofer
Publisher: Springer Nature
ISBN: 3031191110
Category : Mathematics
Languages : en
Pages : 1158

Book Description
Over the course of his distinguished career, Claude Viterbo has made a number of groundbreaking contributions in the development of symplectic geometry/topology and Hamiltonian dynamics. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.

From Geometry to Quantum Mechanics

From Geometry to Quantum Mechanics PDF Author: Yoshiaki Maeda
Publisher: Springer Science & Business Media
ISBN: 0817645306
Category : Mathematics
Languages : en
Pages : 326

Book Description
* Invited articles in differential geometry and mathematical physics in honor of Hideki Omori * Focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, Lie group theory, quantizations and noncommutative geometry, as well as applications of PDEs and variational methods to geometry * Will appeal to graduate students in mathematics and quantum mechanics; also a reference

Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology

Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology PDF Author: Paul Biran
Publisher: Springer Science & Business Media
ISBN: 1402042663
Category : Mathematics
Languages : en
Pages : 476

Book Description
The papers collected in this volume are contributions to the 43rd session of the Seminaire ́ de mathematiques ́ superieures ́ (SMS) on “Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology.” This session took place at the Universite ́ de Montreal ́ in July 2004 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together young researchers from various parts of the world and to present to them some of the most signi cant recent advances in these areas. More than 77 mathematicians from 17 countries followed the 12 series of lectures and participated in the lively exchange of ideas. The lectures covered an ample spectrum of subjects which are re ected in the present volume: Morse theory and related techniques in in nite dim- sional spaces, Floer theory and its recent extensions and generalizations, Morse and Floer theory in relation to string topology, generating functions, structure of the group of Hamiltonian di?eomorphisms and related dynamical problems, applications to robotics and many others. We thank all our main speakers for their stimulating lectures and all p- ticipants for creating a friendly atmosphere during the meeting. We also thank Ms. Diane Belanger ́ , our administrative assistant, for her help with the organi- tion and Mr. Andre ́ Montpetit, our technical editor, for his help in the preparation of the volume.

Poisson Structures

Poisson Structures PDF Author: Camille Laurent-Gengoux
Publisher: Springer Science & Business Media
ISBN: 3642310907
Category : Mathematics
Languages : en
Pages : 470

Book Description
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.​

Symplectic Topology and Measure Preserving Dynamical Systems

Symplectic Topology and Measure Preserving Dynamical Systems PDF Author: Albert Fathi
Publisher: American Mathematical Soc.
ISBN: 0821848925
Category : Mathematics
Languages : en
Pages : 192

Book Description
The papers in this volume were presented at the AMS-IMS-SIAM Joint Summer Research Conference on Symplectic Topology and Measure Preserving Dynamical Systems held in Snowbird, Utah in July 2007. The aim of the conference was to bring together specialists of symplectic topology and of measure preserving dynamics to try to connect these two subjects. One of the motivating conjectures at the interface of these two fields is the question of whether the group of area preserving homeomorphisms of the 2-disc is or is not simple. For diffeomorphisms it was known that the kernel of the Calabi invariant is a normal proper subgroup, so the group of area preserving diffeomorphisms is not simple. Most articles are related to understanding these and related questions in the framework of modern symplectic topology.

Formality Theory

Formality Theory PDF Author: Chiara Esposito
Publisher: Springer
ISBN: 3319092901
Category : Science
Languages : en
Pages : 98

Book Description
This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.