Author: Curtis Franks
Publisher: Cambridge University Press
ISBN: 0521514371
Category : Mathematics
Languages : en
Pages : 229
Book Description
This study reconstructs, analyses and re-evaluates the programme of influential mathematical thinker David Hilbert, presenting it in a different light.
The Autonomy of Mathematical Knowledge
Author: Curtis Franks
Publisher: Cambridge University Press
ISBN: 0521514371
Category : Mathematics
Languages : en
Pages : 229
Book Description
This study reconstructs, analyses and re-evaluates the programme of influential mathematical thinker David Hilbert, presenting it in a different light.
Publisher: Cambridge University Press
ISBN: 0521514371
Category : Mathematics
Languages : en
Pages : 229
Book Description
This study reconstructs, analyses and re-evaluates the programme of influential mathematical thinker David Hilbert, presenting it in a different light.
Platonism, Naturalism, and Mathematical Knowledge
Author: James Robert Brown
Publisher: Routledge
ISBN: 1136580387
Category : Philosophy
Languages : en
Pages : 195
Book Description
This study addresses a central theme in current philosophy: Platonism vs Naturalism and provides accounts of both approaches to mathematics, crucially discussing Quine, Maddy, Kitcher, Lakoff, Colyvan, and many others. Beginning with accounts of both approaches, Brown defends Platonism by arguing that only a Platonistic approach can account for concept acquisition in a number of special cases in the sciences. He also argues for a particular view of applied mathematics, a view that supports Platonism against Naturalist alternatives. Not only does this engaging book present the Platonist-Naturalist debate over mathematics in a comprehensive fashion, but it also sheds considerable light on non-mathematical aspects of a dispute that is central to contemporary philosophy.
Publisher: Routledge
ISBN: 1136580387
Category : Philosophy
Languages : en
Pages : 195
Book Description
This study addresses a central theme in current philosophy: Platonism vs Naturalism and provides accounts of both approaches to mathematics, crucially discussing Quine, Maddy, Kitcher, Lakoff, Colyvan, and many others. Beginning with accounts of both approaches, Brown defends Platonism by arguing that only a Platonistic approach can account for concept acquisition in a number of special cases in the sciences. He also argues for a particular view of applied mathematics, a view that supports Platonism against Naturalist alternatives. Not only does this engaging book present the Platonist-Naturalist debate over mathematics in a comprehensive fashion, but it also sheds considerable light on non-mathematical aspects of a dispute that is central to contemporary philosophy.
The Autonomy of Mathematical Knowledge
Author: Assistant Professor of Philosophy Curtis Franks
Publisher:
ISBN: 9780511641497
Category : Mathematics
Languages : en
Pages : 229
Book Description
This study reconstructs, analyses and re-evaluates the programme of influential mathematical thinker David Hilbert, presenting it in a different light.
Publisher:
ISBN: 9780511641497
Category : Mathematics
Languages : en
Pages : 229
Book Description
This study reconstructs, analyses and re-evaluates the programme of influential mathematical thinker David Hilbert, presenting it in a different light.
Modeling with Mathematics
Author: Nancy Butler Wolf
Publisher: Heinemann Educational Books
ISBN: 9780325062594
Category : Education
Languages : en
Pages : 0
Book Description
"Nancy's in-depth look at mathematical modeling offers middle school teachers the kind of practical help they need for incorporating modeling into their classrooms." -Cathy Seeley, Past President of NCTM, author of Faster Isn't Smarter and Smarter Than We Think "This is the book that math teachers and parents have been waiting for. Nancy provides a comprehensive step-by-step guide to modeling in mathematics at the middle school level." -David E. Drew, author of STEM the Tide: Reforming Science, Technology, Engineering, and Math Education in America We all use math to analyze everyday situations we encounter. Whether we realize it or not, we're modeling with mathematics: taking a complex situation and figuring out what we need to make sense of it. In Modeling with Mathematics, Nancy Butler Wolf shows that math is most powerful when it means something to students. She provides clear, friendly guidance for teachers to use authentic modeling projects in their classrooms and help their students develop key problem-solving skills, including: collecting data and formulating a mathematical model interpreting results and comparing them to reality learning to communicate their solutions in meaningful ways. This kind of teaching can be challenging because it is open-ended: it asks students to make decisions about their approach to a scenario, the information they will need, and the tools they will use. But Nancy proves there is ample middle ground between doing all of the work for your students and leaving them to flail in the dark. Through detailed examples and hands-on activities, Nancy shows how to guide your students to become active participants in mathematical explorations who are able to answer the question, "What did I just figure out?" Her approach values all students as important contributors and shows how instruction focused on mathematical modeling engages every learner regardless of their prior history of success or failure in math.
Publisher: Heinemann Educational Books
ISBN: 9780325062594
Category : Education
Languages : en
Pages : 0
Book Description
"Nancy's in-depth look at mathematical modeling offers middle school teachers the kind of practical help they need for incorporating modeling into their classrooms." -Cathy Seeley, Past President of NCTM, author of Faster Isn't Smarter and Smarter Than We Think "This is the book that math teachers and parents have been waiting for. Nancy provides a comprehensive step-by-step guide to modeling in mathematics at the middle school level." -David E. Drew, author of STEM the Tide: Reforming Science, Technology, Engineering, and Math Education in America We all use math to analyze everyday situations we encounter. Whether we realize it or not, we're modeling with mathematics: taking a complex situation and figuring out what we need to make sense of it. In Modeling with Mathematics, Nancy Butler Wolf shows that math is most powerful when it means something to students. She provides clear, friendly guidance for teachers to use authentic modeling projects in their classrooms and help their students develop key problem-solving skills, including: collecting data and formulating a mathematical model interpreting results and comparing them to reality learning to communicate their solutions in meaningful ways. This kind of teaching can be challenging because it is open-ended: it asks students to make decisions about their approach to a scenario, the information they will need, and the tools they will use. But Nancy proves there is ample middle ground between doing all of the work for your students and leaving them to flail in the dark. Through detailed examples and hands-on activities, Nancy shows how to guide your students to become active participants in mathematical explorations who are able to answer the question, "What did I just figure out?" Her approach values all students as important contributors and shows how instruction focused on mathematical modeling engages every learner regardless of their prior history of success or failure in math.
Autonomy Platonism and the Indispensability Argument
Author: Russell Marcus
Publisher: Lexington Books
ISBN: 0739173138
Category : Philosophy
Languages : en
Pages : 259
Book Description
Mathematical platonism is the view that mathematical statements are true of real mathematical objects like numbers, shapes, and sets. One central problem with platonism is that numbers, shapes, sets, and the like are not perceivable by our senses. In contemporary philosophy, the most common defense of platonism uses what is known as the indispensability argument. According to the indispensabilist, we can know about mathematics because mathematics is essential to science. Platonism is among the most persistent philosophical views. Our mathematical beliefs are among our most entrenched. They have survived the demise of millennia of failed scientific theories. Once established, mathematical theories are rarely rejected, and never for reasons of their inapplicability to empirical science. Autonomy Platonism and the Indispensability Argument is a defense of an alternative to indispensability platonism. The autonomy platonist believes that mathematics is independent of empirical science: there is purely mathematical evidence for purely mathematical theories which are even more compelling to believe than empirical science. Russell Marcus begins by contrasting autonomy platonism and indispensability platonism. He then argues against a variety of indispensability arguments in the first half of the book. In the latter half, he defends a new approach to a traditional platonistic view, one which includes appeals to a priori but fallible methods of belief acquisition, including mathematical intuition, and a natural adoption of ordinary mathematical methods. In the end, Marcus defends his intuition-based autonomy platonism against charges that the autonomy of mathematics is viciously circular. This book will be useful to researchers, graduate students, and advanced undergraduates with interests in the philosophy of mathematics or in the connection between science and mathematics.
Publisher: Lexington Books
ISBN: 0739173138
Category : Philosophy
Languages : en
Pages : 259
Book Description
Mathematical platonism is the view that mathematical statements are true of real mathematical objects like numbers, shapes, and sets. One central problem with platonism is that numbers, shapes, sets, and the like are not perceivable by our senses. In contemporary philosophy, the most common defense of platonism uses what is known as the indispensability argument. According to the indispensabilist, we can know about mathematics because mathematics is essential to science. Platonism is among the most persistent philosophical views. Our mathematical beliefs are among our most entrenched. They have survived the demise of millennia of failed scientific theories. Once established, mathematical theories are rarely rejected, and never for reasons of their inapplicability to empirical science. Autonomy Platonism and the Indispensability Argument is a defense of an alternative to indispensability platonism. The autonomy platonist believes that mathematics is independent of empirical science: there is purely mathematical evidence for purely mathematical theories which are even more compelling to believe than empirical science. Russell Marcus begins by contrasting autonomy platonism and indispensability platonism. He then argues against a variety of indispensability arguments in the first half of the book. In the latter half, he defends a new approach to a traditional platonistic view, one which includes appeals to a priori but fallible methods of belief acquisition, including mathematical intuition, and a natural adoption of ordinary mathematical methods. In the end, Marcus defends his intuition-based autonomy platonism against charges that the autonomy of mathematics is viciously circular. This book will be useful to researchers, graduate students, and advanced undergraduates with interests in the philosophy of mathematics or in the connection between science and mathematics.
Young Children Reinvent Arithmetic
Author: Constance Kamii
Publisher: Teachers College Press
ISBN: 0807776246
Category : Education
Languages : en
Pages : 394
Book Description
In this fully revised second edition of the classic Young Children Reinvent Arithmetic, Constance Kamii describes and develops an innovative program of teaching arithmetic in the early elementary grades. Kamii bases her educational strategies on renowned constructivist Jean Piaget's scientific ideas of how children develop logico-mathematical thinking. Written in collaboration with a classroom teacher, and premised upon the conviction that children are capable of much more than teachers and parents generally realize, the book provides a rich theoretical foundation and a compelling explanation of educational goals and objectives. Kamii calls attention to the ways in which traditional textbook-based teaching can be harmful to children’s development of numerical reasoning, and uses extensive research and classroom-tested studies to illuminate the efficacy of the approach. This book is full of practical suggestions and developmentally appropriate activities that can be used to stimulate numerical thinking among students of varying abilities and learning styles, both within and outside of the classroom. “In this new edition of her important book, Connie Kamii demonstrates scholarship not just in what she has written, but in her willingness to incorporate new ideas and findings. Many people update their books; few assiduously revise them, confronting what they believe to be past errors or gaps in their thinking. Such intellectual honesty, along with consistent connections between theory and practice, make this book a solid contribution to mathematics education of young children.” —Douglas Clements, State University of New York at Buffalo “The development of young children’s logico-mathematical knowledge is at the heart of this text. Similar to the first edition, this revision provides a rich theoretical foundation as well as child-centered activities and principles of teaching that support problem solving, communicating, reasoning, making connections, and representing mathematical ideas. In this great resource for preservice and in-service elementary teachers, Professor Kamii continues to help us understand the implications of Piagetian theory.” —Frances R. Curcio, New York University
Publisher: Teachers College Press
ISBN: 0807776246
Category : Education
Languages : en
Pages : 394
Book Description
In this fully revised second edition of the classic Young Children Reinvent Arithmetic, Constance Kamii describes and develops an innovative program of teaching arithmetic in the early elementary grades. Kamii bases her educational strategies on renowned constructivist Jean Piaget's scientific ideas of how children develop logico-mathematical thinking. Written in collaboration with a classroom teacher, and premised upon the conviction that children are capable of much more than teachers and parents generally realize, the book provides a rich theoretical foundation and a compelling explanation of educational goals and objectives. Kamii calls attention to the ways in which traditional textbook-based teaching can be harmful to children’s development of numerical reasoning, and uses extensive research and classroom-tested studies to illuminate the efficacy of the approach. This book is full of practical suggestions and developmentally appropriate activities that can be used to stimulate numerical thinking among students of varying abilities and learning styles, both within and outside of the classroom. “In this new edition of her important book, Connie Kamii demonstrates scholarship not just in what she has written, but in her willingness to incorporate new ideas and findings. Many people update their books; few assiduously revise them, confronting what they believe to be past errors or gaps in their thinking. Such intellectual honesty, along with consistent connections between theory and practice, make this book a solid contribution to mathematics education of young children.” —Douglas Clements, State University of New York at Buffalo “The development of young children’s logico-mathematical knowledge is at the heart of this text. Similar to the first edition, this revision provides a rich theoretical foundation as well as child-centered activities and principles of teaching that support problem solving, communicating, reasoning, making connections, and representing mathematical ideas. In this great resource for preservice and in-service elementary teachers, Professor Kamii continues to help us understand the implications of Piagetian theory.” —Frances R. Curcio, New York University
Building Thinking Classrooms in Mathematics, Grades K-12
Author: Peter Liljedahl
Publisher: Corwin Press
ISBN: 1544374844
Category : Education
Languages : en
Pages : 454
Book Description
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
Publisher: Corwin Press
ISBN: 1544374844
Category : Education
Languages : en
Pages : 454
Book Description
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
An Historical Introduction to the Philosophy of Mathematics: A Reader
Author: Russell Marcus
Publisher: Bloomsbury Publishing
ISBN: 1472529480
Category : Philosophy
Languages : en
Pages : 849
Book Description
A comprehensive collection of historical readings in the philosophy of mathematics and a selection of influential contemporary work, this much-needed introduction reveals the rich history of the subject. An Historical Introduction to the Philosophy of Mathematics: A Reader brings together an impressive collection of primary sources from ancient and modern philosophy. Arranged chronologically and featuring introductory overviews explaining technical terms, this accessible reader is easy-to-follow and unrivaled in its historical scope. With selections from key thinkers such as Plato, Aristotle, Descartes, Hume and Kant, it connects the major ideas of the ancients with contemporary thinkers. A selection of recent texts from philosophers including Quine, Putnam, Field and Maddy offering insights into the current state of the discipline clearly illustrates the development of the subject. Presenting historical background essential to understanding contemporary trends and a survey of recent work, An Historical Introduction to the Philosophy of Mathematics: A Reader is required reading for undergraduates and graduate students studying the philosophy of mathematics and an invaluable source book for working researchers.
Publisher: Bloomsbury Publishing
ISBN: 1472529480
Category : Philosophy
Languages : en
Pages : 849
Book Description
A comprehensive collection of historical readings in the philosophy of mathematics and a selection of influential contemporary work, this much-needed introduction reveals the rich history of the subject. An Historical Introduction to the Philosophy of Mathematics: A Reader brings together an impressive collection of primary sources from ancient and modern philosophy. Arranged chronologically and featuring introductory overviews explaining technical terms, this accessible reader is easy-to-follow and unrivaled in its historical scope. With selections from key thinkers such as Plato, Aristotle, Descartes, Hume and Kant, it connects the major ideas of the ancients with contemporary thinkers. A selection of recent texts from philosophers including Quine, Putnam, Field and Maddy offering insights into the current state of the discipline clearly illustrates the development of the subject. Presenting historical background essential to understanding contemporary trends and a survey of recent work, An Historical Introduction to the Philosophy of Mathematics: A Reader is required reading for undergraduates and graduate students studying the philosophy of mathematics and an invaluable source book for working researchers.
Mathematical Knowledge in Teaching
Author: Tim Rowland
Publisher: Springer Science & Business Media
ISBN: 904819766X
Category : Education
Languages : en
Pages : 300
Book Description
The quality of primary and secondary school mathematics teaching is generally agreed to depend crucially on the subject-related knowledge of the teacher. However, there is increasing recognition that effective teaching calls for distinctive forms of subject-related knowledge and thinking. Thus, established ways of conceptualizing, developing and assessing mathematical knowledge for teaching may be less than adequate. These are important issues for policy and practice because of longstanding difficulties in recruiting teachers who are confident and conventionally well-qualified in mathematics, and because of rising concern that teaching of the subject has not adapted sufficiently. The issues to be examined in Mathematical Knowledge in Teaching are of considerable significance in addressing global aspirations to raise standards of teaching and learning in mathematics by developing more effective approaches to characterizing, assessing and developing mathematical knowledge for teaching.
Publisher: Springer Science & Business Media
ISBN: 904819766X
Category : Education
Languages : en
Pages : 300
Book Description
The quality of primary and secondary school mathematics teaching is generally agreed to depend crucially on the subject-related knowledge of the teacher. However, there is increasing recognition that effective teaching calls for distinctive forms of subject-related knowledge and thinking. Thus, established ways of conceptualizing, developing and assessing mathematical knowledge for teaching may be less than adequate. These are important issues for policy and practice because of longstanding difficulties in recruiting teachers who are confident and conventionally well-qualified in mathematics, and because of rising concern that teaching of the subject has not adapted sufficiently. The issues to be examined in Mathematical Knowledge in Teaching are of considerable significance in addressing global aspirations to raise standards of teaching and learning in mathematics by developing more effective approaches to characterizing, assessing and developing mathematical knowledge for teaching.
Mathematical Knowledge and the Interplay of Practices
Author: José Ferreirós
Publisher: Princeton University Press
ISBN: 1400874009
Category : Science
Languages : en
Pages : 358
Book Description
This book presents a new approach to the epistemology of mathematics by viewing mathematics as a human activity whose knowledge is intimately linked with practice. Charting an exciting new direction in the philosophy of mathematics, José Ferreirós uses the crucial idea of a continuum to provide an account of the development of mathematical knowledge that reflects the actual experience of doing math and makes sense of the perceived objectivity of mathematical results. Describing a historically oriented, agent-based philosophy of mathematics, Ferreirós shows how the mathematical tradition evolved from Euclidean geometry to the real numbers and set-theoretic structures. He argues for the need to take into account a whole web of mathematical and other practices that are learned and linked by agents, and whose interplay acts as a constraint. Ferreirós demonstrates how advanced mathematics, far from being a priori, is based on hypotheses, in contrast to elementary math, which has strong cognitive and practical roots and therefore enjoys certainty. Offering a wealth of philosophical and historical insights, Mathematical Knowledge and the Interplay of Practices challenges us to rethink some of our most basic assumptions about mathematics, its objectivity, and its relationship to culture and science.
Publisher: Princeton University Press
ISBN: 1400874009
Category : Science
Languages : en
Pages : 358
Book Description
This book presents a new approach to the epistemology of mathematics by viewing mathematics as a human activity whose knowledge is intimately linked with practice. Charting an exciting new direction in the philosophy of mathematics, José Ferreirós uses the crucial idea of a continuum to provide an account of the development of mathematical knowledge that reflects the actual experience of doing math and makes sense of the perceived objectivity of mathematical results. Describing a historically oriented, agent-based philosophy of mathematics, Ferreirós shows how the mathematical tradition evolved from Euclidean geometry to the real numbers and set-theoretic structures. He argues for the need to take into account a whole web of mathematical and other practices that are learned and linked by agents, and whose interplay acts as a constraint. Ferreirós demonstrates how advanced mathematics, far from being a priori, is based on hypotheses, in contrast to elementary math, which has strong cognitive and practical roots and therefore enjoys certainty. Offering a wealth of philosophical and historical insights, Mathematical Knowledge and the Interplay of Practices challenges us to rethink some of our most basic assumptions about mathematics, its objectivity, and its relationship to culture and science.