Author: Mark Gales
Publisher: Now Publishers Inc
ISBN: 1601981201
Category : Automatic speech recognition
Languages : en
Pages : 125
Book Description
The Application of Hidden Markov Models in Speech Recognition presents the core architecture of a HMM-based LVCSR system and proceeds to describe the various refinements which are needed to achieve state-of-the-art performance.
The Application of Hidden Markov Models in Speech Recognition
Author: Mark Gales
Publisher: Now Publishers Inc
ISBN: 1601981201
Category : Automatic speech recognition
Languages : en
Pages : 125
Book Description
The Application of Hidden Markov Models in Speech Recognition presents the core architecture of a HMM-based LVCSR system and proceeds to describe the various refinements which are needed to achieve state-of-the-art performance.
Publisher: Now Publishers Inc
ISBN: 1601981201
Category : Automatic speech recognition
Languages : en
Pages : 125
Book Description
The Application of Hidden Markov Models in Speech Recognition presents the core architecture of a HMM-based LVCSR system and proceeds to describe the various refinements which are needed to achieve state-of-the-art performance.
Hidden Markov Models: Applications In Computer Vision
Author: Horst Bunke
Publisher: World Scientific
ISBN: 9814491470
Category : Computers
Languages : en
Pages : 246
Book Description
Hidden Markov models (HMMs) originally emerged in the domain of speech recognition. In recent years, they have attracted growing interest in the area of computer vision as well. This book is a collection of articles on new developments in the theory of HMMs and their application in computer vision. It addresses topics such as handwriting recognition, shape recognition, face and gesture recognition, tracking, and image database retrieval.This book is also published as a special issue of the International Journal of Pattern Recognition and Artificial Intelligence (February 2001).
Publisher: World Scientific
ISBN: 9814491470
Category : Computers
Languages : en
Pages : 246
Book Description
Hidden Markov models (HMMs) originally emerged in the domain of speech recognition. In recent years, they have attracted growing interest in the area of computer vision as well. This book is a collection of articles on new developments in the theory of HMMs and their application in computer vision. It addresses topics such as handwriting recognition, shape recognition, face and gesture recognition, tracking, and image database retrieval.This book is also published as a special issue of the International Journal of Pattern Recognition and Artificial Intelligence (February 2001).
Hidden Markov Models for Speech Recognition
Author: X. D. Huang
Publisher:
ISBN: 9780748601622
Category : Science
Languages : en
Pages : 276
Book Description
Publisher:
ISBN: 9780748601622
Category : Science
Languages : en
Pages : 276
Book Description
Markov Models for Pattern Recognition
Author: Gernot A. Fink
Publisher: Springer Science & Business Media
ISBN: 1447163087
Category : Computers
Languages : en
Pages : 275
Book Description
This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.
Publisher: Springer Science & Business Media
ISBN: 1447163087
Category : Computers
Languages : en
Pages : 275
Book Description
This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.
Readings in Speech Recognition
Author: Alexander Waibel
Publisher: Elsevier
ISBN: 0080515843
Category : Computers
Languages : en
Pages : 640
Book Description
After more than two decades of research activity, speech recognition has begun to live up to its promise as a practical technology and interest in the field is growing dramatically. Readings in Speech Recognition provides a collection of seminal papers that have influenced or redirected the field and that illustrate the central insights that have emerged over the years. The editors provide an introduction to the field, its concerns and research problems. Subsequent chapters are devoted to the main schools of thought and design philosophies that have motivated different approaches to speech recognition system design. Each chapter includes an introduction to the papers that highlights the major insights or needs that have motivated an approach to a problem and describes the commonalities and differences of that approach to others in the book.
Publisher: Elsevier
ISBN: 0080515843
Category : Computers
Languages : en
Pages : 640
Book Description
After more than two decades of research activity, speech recognition has begun to live up to its promise as a practical technology and interest in the field is growing dramatically. Readings in Speech Recognition provides a collection of seminal papers that have influenced or redirected the field and that illustrate the central insights that have emerged over the years. The editors provide an introduction to the field, its concerns and research problems. Subsequent chapters are devoted to the main schools of thought and design philosophies that have motivated different approaches to speech recognition system design. Each chapter includes an introduction to the papers that highlights the major insights or needs that have motivated an approach to a problem and describes the commonalities and differences of that approach to others in the book.
Python Machine Learning Cookbook
Author: Prateek Joshi
Publisher: Packt Publishing Ltd
ISBN: 1786467682
Category : Computers
Languages : en
Pages : 304
Book Description
100 recipes that teach you how to perform various machine learning tasks in the real world About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide Learn about perceptrons and see how they are used to build neural networks Stuck while making sense of images, text, speech, and real estate? This guide will come to your rescue, showing you how to perform machine learning for each one of these using various techniques Who This Book Is For This book is for Python programmers who are looking to use machine-learning algorithms to create real-world applications. This book is friendly to Python beginners, but familiarity with Python programming would certainly be useful to play around with the code. What You Will Learn Explore classification algorithms and apply them to the income bracket estimation problem Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Explore data visualization techniques to interact with your data in diverse ways Find out how to build a recommendation engine Understand how to interact with text data and build models to analyze it Work with speech data and recognize spoken words using Hidden Markov Models Analyze stock market data using Conditional Random Fields Work with image data and build systems for image recognition and biometric face recognition Grasp how to use deep neural networks to build an optical character recognition system In Detail Machine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. With this book, you will learn how to perform various machine learning tasks in different environments. We'll start by exploring a range of real-life scenarios where machine learning can be used, and look at various building blocks. Throughout the book, you'll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. You'll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples. Style and approach You will explore various real-life scenarios in this book where machine learning can be used, and learn about different building blocks of machine learning using independent recipes in the book.
Publisher: Packt Publishing Ltd
ISBN: 1786467682
Category : Computers
Languages : en
Pages : 304
Book Description
100 recipes that teach you how to perform various machine learning tasks in the real world About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide Learn about perceptrons and see how they are used to build neural networks Stuck while making sense of images, text, speech, and real estate? This guide will come to your rescue, showing you how to perform machine learning for each one of these using various techniques Who This Book Is For This book is for Python programmers who are looking to use machine-learning algorithms to create real-world applications. This book is friendly to Python beginners, but familiarity with Python programming would certainly be useful to play around with the code. What You Will Learn Explore classification algorithms and apply them to the income bracket estimation problem Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Explore data visualization techniques to interact with your data in diverse ways Find out how to build a recommendation engine Understand how to interact with text data and build models to analyze it Work with speech data and recognize spoken words using Hidden Markov Models Analyze stock market data using Conditional Random Fields Work with image data and build systems for image recognition and biometric face recognition Grasp how to use deep neural networks to build an optical character recognition system In Detail Machine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. With this book, you will learn how to perform various machine learning tasks in different environments. We'll start by exploring a range of real-life scenarios where machine learning can be used, and look at various building blocks. Throughout the book, you'll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. You'll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples. Style and approach You will explore various real-life scenarios in this book where machine learning can be used, and learn about different building blocks of machine learning using independent recipes in the book.
Cyber Intelligence and Information Retrieval
Author: João Manuel R. S. Tavares
Publisher: Springer Nature
ISBN: 9811642842
Category : Technology & Engineering
Languages : en
Pages : 630
Book Description
This book gathers a collection of high-quality peer-reviewed research papers presented at International Conference on Cyber Intelligence and Information Retrieval (CIIR 2021), held at Institute of Engineering & Management, Kolkata, India during 20–21 May 2021. The book covers research papers in the field of privacy and security in the cloud, data loss prevention and recovery, high-performance networks, network security and cryptography, image and signal processing, artificial immune systems, information and network security, data science techniques and applications, data warehousing and data mining, data mining in dynamic environment, higher-order neural computing, rough set and fuzzy set theory, and nature-inspired computing techniques.
Publisher: Springer Nature
ISBN: 9811642842
Category : Technology & Engineering
Languages : en
Pages : 630
Book Description
This book gathers a collection of high-quality peer-reviewed research papers presented at International Conference on Cyber Intelligence and Information Retrieval (CIIR 2021), held at Institute of Engineering & Management, Kolkata, India during 20–21 May 2021. The book covers research papers in the field of privacy and security in the cloud, data loss prevention and recovery, high-performance networks, network security and cryptography, image and signal processing, artificial immune systems, information and network security, data science techniques and applications, data warehousing and data mining, data mining in dynamic environment, higher-order neural computing, rough set and fuzzy set theory, and nature-inspired computing techniques.
Hidden Markov Models for Time Series
Author: Walter Zucchini
Publisher: CRC Press
ISBN: 1482253844
Category : Mathematics
Languages : en
Pages : 370
Book Description
Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data
Publisher: CRC Press
ISBN: 1482253844
Category : Mathematics
Languages : en
Pages : 370
Book Description
Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data
Fundamentals in Handwriting Recognition
Author: Sebastiano Impedovo
Publisher: Springer Science & Business Media
ISBN: 3642786464
Category : Computers
Languages : en
Pages : 499
Book Description
For many years researchers in the field of Handwriting Recognition were considered to be working in an area of minor importance in Pattern Recog nition. They had only the possibility to present the results of their research at general conferences such as the ICPR or publish their papers in journals such as some of the IEEE series or PR, together with many other papers generally oriented to the more promising areas of Pattern Recognition. The series of International Workshops on Frontiers in Handwriting Recog nition and International Conferences on Document Analysis and Recognition together with some special issues of several journals are now fulfilling the expectations of many researchers who have been attracted to this area and are involving many academic institutions and industrial companies. But in order to facilitate the introduction of young researchers into the field and give them both theoretically and practically powerful tools, it is now time that some high level teaching schools in handwriting recognition be held, also in order to unite the foundations of the field. Therefore it was my pleasure to organize the NATO Advanced Study Institute on Fundamentals in Handwriting Recognition that had its origin in many exchanges among the most important specialists in the field, during the International Workshops on Frontiers in Handwriting Recognition.
Publisher: Springer Science & Business Media
ISBN: 3642786464
Category : Computers
Languages : en
Pages : 499
Book Description
For many years researchers in the field of Handwriting Recognition were considered to be working in an area of minor importance in Pattern Recog nition. They had only the possibility to present the results of their research at general conferences such as the ICPR or publish their papers in journals such as some of the IEEE series or PR, together with many other papers generally oriented to the more promising areas of Pattern Recognition. The series of International Workshops on Frontiers in Handwriting Recog nition and International Conferences on Document Analysis and Recognition together with some special issues of several journals are now fulfilling the expectations of many researchers who have been attracted to this area and are involving many academic institutions and industrial companies. But in order to facilitate the introduction of young researchers into the field and give them both theoretically and practically powerful tools, it is now time that some high level teaching schools in handwriting recognition be held, also in order to unite the foundations of the field. Therefore it was my pleasure to organize the NATO Advanced Study Institute on Fundamentals in Handwriting Recognition that had its origin in many exchanges among the most important specialists in the field, during the International Workshops on Frontiers in Handwriting Recognition.
Connectionist Speech Recognition
Author: Hervé A. Bourlard
Publisher: Springer Science & Business Media
ISBN: 1461532108
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Connectionist Speech Recognition: A Hybrid Approach describes the theory and implementation of a method to incorporate neural network approaches into state of the art continuous speech recognition systems based on hidden Markov models (HMMs) to improve their performance. In this framework, neural networks (and in particular, multilayer perceptrons or MLPs) have been restricted to well-defined subtasks of the whole system, i.e. HMM emission probability estimation and feature extraction. The book describes a successful five-year international collaboration between the authors. The lessons learned form a case study that demonstrates how hybrid systems can be developed to combine neural networks with more traditional statistical approaches. The book illustrates both the advantages and limitations of neural networks in the framework of a statistical systems. Using standard databases and comparison with some conventional approaches, it is shown that MLP probability estimation can improve recognition performance. Other approaches are discussed, though there is no such unequivocal experimental result for these methods. Connectionist Speech Recognition is of use to anyone intending to use neural networks for speech recognition or within the framework provided by an existing successful statistical approach. This includes research and development groups working in the field of speech recognition, both with standard and neural network approaches, as well as other pattern recognition and/or neural network researchers. The book is also suitable as a text for advanced courses on neural networks or speech processing.
Publisher: Springer Science & Business Media
ISBN: 1461532108
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Connectionist Speech Recognition: A Hybrid Approach describes the theory and implementation of a method to incorporate neural network approaches into state of the art continuous speech recognition systems based on hidden Markov models (HMMs) to improve their performance. In this framework, neural networks (and in particular, multilayer perceptrons or MLPs) have been restricted to well-defined subtasks of the whole system, i.e. HMM emission probability estimation and feature extraction. The book describes a successful five-year international collaboration between the authors. The lessons learned form a case study that demonstrates how hybrid systems can be developed to combine neural networks with more traditional statistical approaches. The book illustrates both the advantages and limitations of neural networks in the framework of a statistical systems. Using standard databases and comparison with some conventional approaches, it is shown that MLP probability estimation can improve recognition performance. Other approaches are discussed, though there is no such unequivocal experimental result for these methods. Connectionist Speech Recognition is of use to anyone intending to use neural networks for speech recognition or within the framework provided by an existing successful statistical approach. This includes research and development groups working in the field of speech recognition, both with standard and neural network approaches, as well as other pattern recognition and/or neural network researchers. The book is also suitable as a text for advanced courses on neural networks or speech processing.