Author: Sergei Antoshin
Publisher:
ISBN: 9781462351770
Category : Business & Economics
Languages : en
Pages : 27
Book Description
In a recent paper, Bai and Perron (2006) demonstrate that their approach for testing for multiple structural breaks in time series works well in large samples, but they found substantial deviations in both the size and power of their tests in smaller samples. We propose modifying their methodology to deal with small samples by using Monte Carlo simulations to determine sample-specific critical values under the each time the test is run. We draw on the results of our simulations to offer practical suggestions on handling serial correlation, model misspecification, and the use of alternative test statistics for sequential testing. We show that, for most types of data generating processes in samples with as low as 50 observations, our proposed modifications perform substantially better.
Testing for Structural Breaks in Small Samples
Author: Sergei Antoshin
Publisher:
ISBN: 9781462351770
Category : Business & Economics
Languages : en
Pages : 27
Book Description
In a recent paper, Bai and Perron (2006) demonstrate that their approach for testing for multiple structural breaks in time series works well in large samples, but they found substantial deviations in both the size and power of their tests in smaller samples. We propose modifying their methodology to deal with small samples by using Monte Carlo simulations to determine sample-specific critical values under the each time the test is run. We draw on the results of our simulations to offer practical suggestions on handling serial correlation, model misspecification, and the use of alternative test statistics for sequential testing. We show that, for most types of data generating processes in samples with as low as 50 observations, our proposed modifications perform substantially better.
Publisher:
ISBN: 9781462351770
Category : Business & Economics
Languages : en
Pages : 27
Book Description
In a recent paper, Bai and Perron (2006) demonstrate that their approach for testing for multiple structural breaks in time series works well in large samples, but they found substantial deviations in both the size and power of their tests in smaller samples. We propose modifying their methodology to deal with small samples by using Monte Carlo simulations to determine sample-specific critical values under the each time the test is run. We draw on the results of our simulations to offer practical suggestions on handling serial correlation, model misspecification, and the use of alternative test statistics for sequential testing. We show that, for most types of data generating processes in samples with as low as 50 observations, our proposed modifications perform substantially better.
Unit Roots, Cointegration, and Structural Change
Author: G. S. Maddala
Publisher: Cambridge University Press
ISBN: 9780521587822
Category : Business & Economics
Languages : en
Pages : 528
Book Description
A comprehensive review of unit roots, cointegration and structural change from a best-selling author.
Publisher: Cambridge University Press
ISBN: 9780521587822
Category : Business & Economics
Languages : en
Pages : 528
Book Description
A comprehensive review of unit roots, cointegration and structural change from a best-selling author.
Econometrics of Structural Change
Author: Walter Krämer
Publisher: Springer Science & Business Media
ISBN: 3642484123
Category : Business & Economics
Languages : en
Pages : 134
Book Description
Econometric models are made up of assumptions which never exactly match reality. Among the most contested ones is the requirement that the coefficients of an econometric model remain stable over time. Recent years have therefore seen numerous attempts to test for it or to model possible structural change when it can no longer be ignored. This collection of papers from Empirical Economics mirrors part of this development. The point of departure of most studies in this volume is the standard linear regression model Yt = x;fJt + U (t = I, ... , 1), t where notation is obvious and where the index t emphasises the fact that structural change is mostly discussed and encountered in a time series context. It is much less of a problem for cross section data, although many tests apply there as well. The null hypothesis of most tests for structural change is that fJt = fJo for all t, i.e. that the same regression applies to all time periods in the sample and that the disturbances u are well behaved. The well known Chow test for instance assumes t that there is a single structural shift at a known point in time, i.e. that fJt = fJo (t
Publisher: Springer Science & Business Media
ISBN: 3642484123
Category : Business & Economics
Languages : en
Pages : 134
Book Description
Econometric models are made up of assumptions which never exactly match reality. Among the most contested ones is the requirement that the coefficients of an econometric model remain stable over time. Recent years have therefore seen numerous attempts to test for it or to model possible structural change when it can no longer be ignored. This collection of papers from Empirical Economics mirrors part of this development. The point of departure of most studies in this volume is the standard linear regression model Yt = x;fJt + U (t = I, ... , 1), t where notation is obvious and where the index t emphasises the fact that structural change is mostly discussed and encountered in a time series context. It is much less of a problem for cross section data, although many tests apply there as well. The null hypothesis of most tests for structural change is that fJt = fJo for all t, i.e. that the same regression applies to all time periods in the sample and that the disturbances u are well behaved. The well known Chow test for instance assumes t that there is a single structural shift at a known point in time, i.e. that fJt = fJo (t
Unit Roots and Structural Breaks
Author: Pierre Perron
Publisher:
ISBN: 9783038428121
Category :
Languages : en
Pages :
Book Description
Unit Roots and Structural Breaks.
Publisher:
ISBN: 9783038428121
Category :
Languages : en
Pages :
Book Description
Unit Roots and Structural Breaks.
Finite Sample Econometrics
Author: Aman Ullah
Publisher: Oxford University Press
ISBN: 0198774478
Category : Business & Economics
Languages : en
Pages : 241
Book Description
This text provides a comprehensive treatment of finite sample statistics and econometrics. Within this framework, the book discusses the basic analytical tools of finite sample econometrics and explores their applications to models covered in a first year graduate course in econometrics.
Publisher: Oxford University Press
ISBN: 0198774478
Category : Business & Economics
Languages : en
Pages : 241
Book Description
This text provides a comprehensive treatment of finite sample statistics and econometrics. Within this framework, the book discusses the basic analytical tools of finite sample econometrics and explores their applications to models covered in a first year graduate course in econometrics.
Time Series Econometrics
Author: Pierre Perron
Publisher:
ISBN: 9789813237896
Category : Econometrics
Languages : en
Pages :
Book Description
Part I. Unit roots and trend breaks -- Part II. Structural change
Publisher:
ISBN: 9789813237896
Category : Econometrics
Languages : en
Pages :
Book Description
Part I. Unit roots and trend breaks -- Part II. Structural change
Small Sample Size Solutions
Author: Rens van de Schoot
Publisher: Routledge
ISBN: 1000760944
Category : Psychology
Languages : en
Pages : 270
Book Description
Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapter illustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. This essential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect. The statistical models in the book range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics.
Publisher: Routledge
ISBN: 1000760944
Category : Psychology
Languages : en
Pages : 270
Book Description
Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapter illustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. This essential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect. The statistical models in the book range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics.
Topics in Advanced Econometrics
Author: Phoebus J. Dhrymes
Publisher: Springer Science & Business Media
ISBN: 1461245486
Category : Business & Economics
Languages : en
Pages : 390
Book Description
For sometime now, I felt that the evolution of the literature of econo metrics had mandated a higher level of mathematical proficiency. This is particularly evident beyond the level of the general linear model (GLM) and the general linear structural econometric model (GLSEM). The problems one encounters in nonlinear econometrics are not easily amenable to treatment by the analytical methods one typically acquires, when one learns about probability and inference through the use of den sity functions. Even in standard traditional topics, one is often compelled to resort to heuristics; for example, it is difficult to prove central limit theorems for nonidentically distributed or martingale sequences, solely by the use of characteristic functions. Yet such proofs are essential, even in only moderately sophisticated classroom exposition. Unfortunately, relatively few students enter a graduate economics de partment ready to tackle probability theory in measure theoretic terms. The present volume has grown out of the need to lay the foundation for such discussions. The motivating forces were, chiefly, (a) the frustration one encounters in attempting to communicate certain concepts to stu dents wholly in analytic terms; and (b) the unwillingness of the typical student to sit through several courses in mathematics departments, in order to acquire the requisite background.
Publisher: Springer Science & Business Media
ISBN: 1461245486
Category : Business & Economics
Languages : en
Pages : 390
Book Description
For sometime now, I felt that the evolution of the literature of econo metrics had mandated a higher level of mathematical proficiency. This is particularly evident beyond the level of the general linear model (GLM) and the general linear structural econometric model (GLSEM). The problems one encounters in nonlinear econometrics are not easily amenable to treatment by the analytical methods one typically acquires, when one learns about probability and inference through the use of den sity functions. Even in standard traditional topics, one is often compelled to resort to heuristics; for example, it is difficult to prove central limit theorems for nonidentically distributed or martingale sequences, solely by the use of characteristic functions. Yet such proofs are essential, even in only moderately sophisticated classroom exposition. Unfortunately, relatively few students enter a graduate economics de partment ready to tackle probability theory in measure theoretic terms. The present volume has grown out of the need to lay the foundation for such discussions. The motivating forces were, chiefly, (a) the frustration one encounters in attempting to communicate certain concepts to stu dents wholly in analytic terms; and (b) the unwillingness of the typical student to sit through several courses in mathematics departments, in order to acquire the requisite background.
Doing Meta-Analysis with R
Author: Mathias Harrer
Publisher: CRC Press
ISBN: 1000435636
Category : Mathematics
Languages : en
Pages : 500
Book Description
Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
Publisher: CRC Press
ISBN: 1000435636
Category : Mathematics
Languages : en
Pages : 500
Book Description
Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
Small Specimen Test Techniques
Author: ASTM International Committee E10 on Nuclear Technology and Applications
Publisher: ASTM International
ISBN: 0803128975
Category : Light water reactors
Languages : en
Pages : 495
Book Description
Publisher: ASTM International
ISBN: 0803128975
Category : Light water reactors
Languages : en
Pages : 495
Book Description