Terrestrial Radiative Transfer PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Terrestrial Radiative Transfer PDF full book. Access full book title Terrestrial Radiative Transfer by Harriet H. Natsuyama. Download full books in PDF and EPUB format.

Terrestrial Radiative Transfer

Terrestrial Radiative Transfer PDF Author: Harriet H. Natsuyama
Publisher: Springer Science & Business Media
ISBN: 4431685278
Category : Science
Languages : en
Pages : 294

Book Description
A modern treatment of both direct and inverse problems applicable to the remote sensing of earth from space or from the air. Starting from a physical description of the process, the authors develop innovative mathematical models, fundamental mathematics for the analysis of these models, and methods for obtaining computational solutions. They also include the results of recent research using this approach, such as invariant imbedding techniques, associative memory artificial neural networks, and the automatic evaluation of derivatives. With its coverage of uniform parallel illumination, internal sources, and incident spotlight beams, this book is indispensable for researchers working to reduce the atmospheric distortion of remotely sensed terrestrial images.

Terrestrial Radiative Transfer

Terrestrial Radiative Transfer PDF Author: Harriet H. Natsuyama
Publisher: Springer Science & Business Media
ISBN: 4431685278
Category : Science
Languages : en
Pages : 294

Book Description
A modern treatment of both direct and inverse problems applicable to the remote sensing of earth from space or from the air. Starting from a physical description of the process, the authors develop innovative mathematical models, fundamental mathematics for the analysis of these models, and methods for obtaining computational solutions. They also include the results of recent research using this approach, such as invariant imbedding techniques, associative memory artificial neural networks, and the automatic evaluation of derivatives. With its coverage of uniform parallel illumination, internal sources, and incident spotlight beams, this book is indispensable for researchers working to reduce the atmospheric distortion of remotely sensed terrestrial images.

Radiative Transfer in the Atmosphere and Ocean

Radiative Transfer in the Atmosphere and Ocean PDF Author: Gary E. Thomas
Publisher: Cambridge University Press
ISBN: 9780521890618
Category : Nature
Languages : en
Pages : 554

Book Description
Provides a foundation of the theoretical and practical aspects of radiative transfer, for the atmospheric, oceanic and environmental sciences.

Radiative Transfer in the Atmosphere and Ocean

Radiative Transfer in the Atmosphere and Ocean PDF Author: Knut Stamnes
Publisher: Cambridge University Press
ISBN: 1107094739
Category : Science
Languages : en
Pages : 531

Book Description
This updated edition provides a foundation of theoretical and practical aspects of radiative transfer for students and researchers in atmospheric, oceanic and environmental sciences.

An Introduction to Atmospheric Radiation

An Introduction to Atmospheric Radiation PDF Author: Liou
Publisher: Academic Press
ISBN: 0080954596
Category : Science
Languages : en
Pages : 409

Book Description
An Introduction to Atmospheric Radiation

Non-LTE Radiative Transfer in the Atmosphere

Non-LTE Radiative Transfer in the Atmosphere PDF Author: Manuel López-Puertas
Publisher: World Scientific
ISBN: 9789812811493
Category : Science
Languages : en
Pages : 512

Book Description
Ch. 1. Introduction and overview. 1.1. General introduction. 1.2. Basic properties of the Earth's atmosphere. 1.3. What is LTE? 1.4. Non-LTE situations. 1.5. The importance of non-LTE. 1.6. Some historical background. 1.7. Non-LTE models. 1.8. Experimental studies of non-LTE. 1.9. Non-LTE in planetary atmospheres. 1.10. References and further reading -- ch. 2. Molecular spectra. 2.1. Introduction. 2.2. Energy levels in diatomic molecules. 2.3. Energy levels in polyatomic molecules. 2.4. Transitions and spectral bands. 2.5. Properties of individual vibration-rotation lines. 2.6. Interactions between energy levels. 2.7. References and further reading -- ch. 3. Basic atmospheric radiative transfer. 3.1. Introduction. 3.2. Properties of radiation. 3.3. The radiative transfer equation. 3.4. The formal solution of the radiative transfer equation. 3.5. Thermodynamic equilibrium and local thermodynamic equilibrium. 3.6. The source function in non-LTE. 3.7. Non-LTE situations. 3.8. References and further reading -- ch. 4. Solutions to the radiative transfer equation in LTE. 4.1. Introduction. 4.2. Integration of the radiative transfer equation over height. 4.3. Integration of the radiative transfer equation over frequency. 4.4. Integration of the radiative transfer equation over solid angle. 4.5. References and further reading -- ch. 5. Solutions to the radiative transfer equation in non-LTE. 5.1. Introduction. 5.2. Simple solutions for radiative transfer under non-LTE. 5.3. The full solution of the radiative transfer equation in non-LTE. 5.4. Integration of the RTE in non-LTE. 5.5. Intercomparison of non-LTE codes. 5.6. Parameterizations of the non-LTE cooling rate. 5.7. The Curtis matrix method. 5.8. References and further reading -- ch. 6. Non-LTE modelling of the Earth's atmosphere I: CO2. 6.1. Introduction. 6.2. Useful approximations. 6.3. Carbon dioxide, CO2. 6.4. References and further reading -- ch. 7. Non-LTE modelling of the Earth's atmosphere II: Other infrared emitters. 7.1. Introduction. 7.2. Carbon monoxide, CO. 7.3. Ozone, O3. 7.4. Water vapour, H2O. 7.5. Methane, CH4. 7.6. Nitric oxide, NO. 7.7. Nitrogen dioxide, NO2. 7.8. Nitrous oxide, N2O. 7.9. Nitric acid, HNO3. 7.10. Hydroxyl radical, OH. 7.11. Molecular oxygen atmospheric infrared bands. 7.12. Hydrogen chloride, HC1, and hydrogen fluoride, HF. 7.13. NO+. 7.14. Atomic Oxygen, O (3P), at 63[symbol]m. 7.15. References and further reading -- ch. 8. Remote sensing of the non-LTE atmosphere. 8.1. Introduction. 8.2. The analysis of emission measurements. 8.3. Observations of carbon dioxide in emission. 8.4. Observations of ozone in emission. 8.5. Observations of water vapour in emission. 8.6. Observations of carbon monoxide in emission. 8.7. Observations of nitric oxide in emission. 8.8. Observations of other infrared emissions. 8.9. Rotational non-LTE. 8.10. Absorption measurements. 8.11. Simulated limb emission spectra at high resolution. 8.12. Simulated Nadir emission spectra at high resolution. 8.13. Non-LTE retrieval schemes. 8.14. References and further reading -- ch. 9. Cooling and heating rates. 9.1. Introduction. 9.2. CO2 15 f[symbol]m cooling. 9.3. O3 9.6[symbol]xm cooling. 9.4. H2O 6.3[symbol]m cooling. 9.5. NO 5.3[symbol]m cooling. 9.6. O(3Pi) 63[symbol]m cooling. 9.7. Summary of cooling rates. 9.8. CO2 solar heating. 9.9. References and further reading -- ch. 10. Non-LTE in planetary atmospheres. 10.1. Introduction. 10.2. The terrestrial planets: Mars and Venus. 10.3. A non-LTE model for the Martian and Venusian atmospheres. 10.4. Mars. 10.5. Venus. 10.6. Outer planets. 10.7. Titan. 10.8. Comets. 10.9. References and further reading.

Theory of Atmospheric Radiative Transfer

Theory of Atmospheric Radiative Transfer PDF Author: Manfred Wendisch
Publisher: John Wiley & Sons
ISBN: 3527408363
Category : Science
Languages : en
Pages : 338

Book Description
Aimed at the senior undergraduate and graduate level, this textbook fills the gap between general introductory texts offering little detail and very technical, advanced books written for mathematicians and theorists rather than experimentalists in the field. The result is a concise course in atmospheric radiative processes, tailored for one semester. The authors are accomplished researchers who know how to reach their intended audience and provide here the content needed to understand climate warming and remote sensing for pollution measurement. They also include supplementary reading for planet scientists and problems. Equally suitable reading for geophysicists, physical chemists, astronomers, environmental chemists and spectroscopists. A solutions manual for lecturers will be provided on www.wiley-vch.de/supplements.

Climate Change and Terrestrial Ecosystem Modeling

Climate Change and Terrestrial Ecosystem Modeling PDF Author: Gordon Bonan
Publisher: Cambridge University Press
ISBN: 1107043786
Category : Mathematics
Languages : en
Pages : 459

Book Description
Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.

Global Physical Climatology

Global Physical Climatology PDF Author: Dennis L. Hartmann
Publisher: Academic Press
ISBN: 0080571638
Category : Science
Languages : en
Pages : 425

Book Description
Global Physical Climatology is an introductory text devoted to the fundamental physical principles and problems of climate sensitivity and change. Addressing some of the most critical issues in climatology, this text features incisive coverage of topics that are central to understanding orbital parameter theory for past climate changes, and for anthropogenic and natural causes of near-future changes--Key Features* Covers the physics of climate change* Examines the nature of the current climate and its previous changes* Explores the sensitivity of climate and the mechanisms by which humans are likely to produce near-future climate changes* Provides instructive end-of-chapter exercises and appendices

Radiation and Climate

Radiation and Climate PDF Author: Ilias M. Vardavas
Publisher: Oxford University Press
ISBN: 0199227470
Category : Nature
Languages : en
Pages : 511

Book Description
This new book describes the basic physics of solar and infrared radiation in the atmosphere. Radiation theory is related to the development of climate prediction models, and to measurement techniques for monitoring the Earth's energy budget and making remote sensing observations from satellites.

An Introduction to Atmospheric Radiation

An Introduction to Atmospheric Radiation PDF Author: K. N. Liou
Publisher: Academic Press
ISBN: 0124514510
Category : Nature
Languages : en
Pages : 599

Book Description
Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.