Tensor Calculus for Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Tensor Calculus for Physics PDF full book. Access full book title Tensor Calculus for Physics by Dwight E. Neuenschwander. Download full books in PDF and EPUB format.

Tensor Calculus for Physics

Tensor Calculus for Physics PDF Author: Dwight E. Neuenschwander
Publisher: JHU Press
ISBN: 142141564X
Category : Mathematics
Languages : en
Pages : 244

Book Description
It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.--Gary White, editor of The Physics Teacher "American Journal of Physics"

Tensor Calculus for Physics

Tensor Calculus for Physics PDF Author: Dwight E. Neuenschwander
Publisher: JHU Press
ISBN: 142141564X
Category : Mathematics
Languages : en
Pages : 244

Book Description
It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.--Gary White, editor of The Physics Teacher "American Journal of Physics"

Tensor Calculus

Tensor Calculus PDF Author: J. L. Synge
Publisher: Courier Corporation
ISBN: 048614139X
Category : Mathematics
Languages : en
Pages : 340

Book Description
Fundamental introduction of absolute differential calculus and for those interested in applications of tensor calculus to mathematical physics and engineering. Topics include spaces and tensors; basic operations in Riemannian space, curvature of space, more.

An Introduction to Tensor Calculus and Relativity

An Introduction to Tensor Calculus and Relativity PDF Author: Derek Frank Lawden
Publisher:
ISBN: 9781258787417
Category :
Languages : en
Pages : 184

Book Description


Introduction to Tensor Analysis and the Calculus of Moving Surfaces

Introduction to Tensor Analysis and the Calculus of Moving Surfaces PDF Author: Pavel Grinfeld
Publisher: Springer Science & Business Media
ISBN: 1461478677
Category : Mathematics
Languages : en
Pages : 303

Book Description
This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.

Tensor Analysis on Manifolds

Tensor Analysis on Manifolds PDF Author: Richard L. Bishop
Publisher: Courier Corporation
ISBN: 0486139239
Category : Mathematics
Languages : en
Pages : 290

Book Description
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div

Tensor Calculus for Engineers and Physicists

Tensor Calculus for Engineers and Physicists PDF Author: Emil de Souza Sánchez Filho
Publisher: Springer
ISBN: 331931520X
Category : Technology & Engineering
Languages : en
Pages : 370

Book Description
This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of n-dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without needing to resort to other bibliographical sources on tensors. Chapter 1 deals with Fundamental Concepts about tensors and chapter 2 is devoted to the study of covariant, absolute and contravariant derivatives. The chapters 3 and 4 are dedicated to the Integral Theorems and Differential Operators, respectively. Chapter 5 deals with Riemann Spaces, and finally the chapter 6 presents a concise study of the Parallelism of Vectors. It also shows how to solve various problems of several particular manifolds.

Tensor Calculus and Analytical Dynamics

Tensor Calculus and Analytical Dynamics PDF Author: John G. Papastavridis
Publisher: Routledge
ISBN: 1351411624
Category : Mathematics
Languages : en
Pages : 435

Book Description
Tensor Calculus and Analytical Dynamics provides a concise, comprehensive, and readable introduction to classical tensor calculus - in both holonomic and nonholonomic coordinates - as well as to its principal applications to the Lagrangean dynamics of discrete systems under positional or velocity constraints. The thrust of the book focuses on formal structure and basic geometrical/physical ideas underlying most general equations of motion of mechanical systems under linear velocity constraints. Written for the theoretically minded engineer, Tensor Calculus and Analytical Dynamics contains uniquely accessbile treatments of such intricate topics as: tensor calculus in nonholonomic variables Pfaffian nonholonomic constraints related integrability theory of Frobenius The book enables readers to move quickly and confidently in any particular geometry-based area of theoretical or applied mechanics in either classical or modern form.

Tensor Spaces and Numerical Tensor Calculus

Tensor Spaces and Numerical Tensor Calculus PDF Author: Wolfgang Hackbusch
Publisher: Springer Nature
ISBN: 3030355543
Category : Mathematics
Languages : en
Pages : 622

Book Description
Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.

Vector and Tensor Analysis with Applications

Vector and Tensor Analysis with Applications PDF Author: A. I. Borisenko
Publisher: Courier Corporation
ISBN: 0486131904
Category : Mathematics
Languages : en
Pages : 292

Book Description
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.

Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds

Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds PDF Author: Uwe Mühlich
Publisher: Springer
ISBN: 3319562649
Category : Science
Languages : en
Pages : 134

Book Description
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.