Author: Hung Nguyen-Schäfer
Publisher: Springer
ISBN: 366243444X
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
Tensors and methods of differential geometry are very useful mathematical tools in many fields of modern physics and computational engineering including relativity physics, electrodynamics, computational fluid dynamics (CFD), continuum mechanics, aero and vibroacoustics and cybernetics. This book comprehensively presents topics, such as bra-ket notation, tensor analysis and elementary differential geometry of a moving surface. Moreover, authors intentionally abstain from giving mathematically rigorous definitions and derivations that are however dealt with as precisely as possible. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors and differential geometry and to use them in the physical and engineering world. The target audience primarily comprises graduate students in physics and engineering, research scientists and practicing engineers.
Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers
Author: Hung Nguyen-Schäfer
Publisher: Springer
ISBN: 366243444X
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
Tensors and methods of differential geometry are very useful mathematical tools in many fields of modern physics and computational engineering including relativity physics, electrodynamics, computational fluid dynamics (CFD), continuum mechanics, aero and vibroacoustics and cybernetics. This book comprehensively presents topics, such as bra-ket notation, tensor analysis and elementary differential geometry of a moving surface. Moreover, authors intentionally abstain from giving mathematically rigorous definitions and derivations that are however dealt with as precisely as possible. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors and differential geometry and to use them in the physical and engineering world. The target audience primarily comprises graduate students in physics and engineering, research scientists and practicing engineers.
Publisher: Springer
ISBN: 366243444X
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
Tensors and methods of differential geometry are very useful mathematical tools in many fields of modern physics and computational engineering including relativity physics, electrodynamics, computational fluid dynamics (CFD), continuum mechanics, aero and vibroacoustics and cybernetics. This book comprehensively presents topics, such as bra-ket notation, tensor analysis and elementary differential geometry of a moving surface. Moreover, authors intentionally abstain from giving mathematically rigorous definitions and derivations that are however dealt with as precisely as possible. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors and differential geometry and to use them in the physical and engineering world. The target audience primarily comprises graduate students in physics and engineering, research scientists and practicing engineers.
Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers
Author: Hung Nguyen-Schafer
Publisher:
ISBN: 9783662434451
Category :
Languages : en
Pages : 256
Book Description
Publisher:
ISBN: 9783662434451
Category :
Languages : en
Pages : 256
Book Description
Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers
Author: Hung Nguyen-Schäfer
Publisher: Springer
ISBN: 3662484978
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
This book presents tensors and differential geometry in a comprehensive and approachable manner, providing a bridge from the place where physics and engineering mathematics end, and the place where tensor analysis begins. Among the topics examined are tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. The book includes numerous examples with solutions and concrete calculations, which guide readers through these complex topics step by step. Mindful of the practical needs of engineers and physicists, book favors simplicity over a more rigorous, formal approach. The book shows readers how to work with tensors and differential geometry and how to apply them to modeling the physical and engineering world. The authors provide chapter-length treatment of topics at the intersection of advanced mathematics, and physics and engineering: • General Basis and Bra-Ket Notation • Tensor Analysis • Elementary Differential Geometry • Differential Forms • Applications of Tensors and Differential Geometry • Tensors and Bra-Ket Notation in Quantum Mechanics The text reviews methods and applications in computational fluid dynamics; continuum mechanics; electrodynamics in special relativity; cosmology in the Minkowski four-dimensional space time; and relativistic and non-relativistic quantum mechanics. Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers benefits research scientists and practicing engineers in a variety of fields, who use tensor analysis and differential geometry in the context of applied physics, and electrical and mechanical engineering. It will also interest graduate students in applied physics and engineering.
Publisher: Springer
ISBN: 3662484978
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
This book presents tensors and differential geometry in a comprehensive and approachable manner, providing a bridge from the place where physics and engineering mathematics end, and the place where tensor analysis begins. Among the topics examined are tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. The book includes numerous examples with solutions and concrete calculations, which guide readers through these complex topics step by step. Mindful of the practical needs of engineers and physicists, book favors simplicity over a more rigorous, formal approach. The book shows readers how to work with tensors and differential geometry and how to apply them to modeling the physical and engineering world. The authors provide chapter-length treatment of topics at the intersection of advanced mathematics, and physics and engineering: • General Basis and Bra-Ket Notation • Tensor Analysis • Elementary Differential Geometry • Differential Forms • Applications of Tensors and Differential Geometry • Tensors and Bra-Ket Notation in Quantum Mechanics The text reviews methods and applications in computational fluid dynamics; continuum mechanics; electrodynamics in special relativity; cosmology in the Minkowski four-dimensional space time; and relativistic and non-relativistic quantum mechanics. Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers benefits research scientists and practicing engineers in a variety of fields, who use tensor analysis and differential geometry in the context of applied physics, and electrical and mechanical engineering. It will also interest graduate students in applied physics and engineering.
Vector and Tensor Analysis with Applications
Author: A. I. Borisenko
Publisher: Courier Corporation
ISBN: 0486131904
Category : Mathematics
Languages : en
Pages : 292
Book Description
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
Publisher: Courier Corporation
ISBN: 0486131904
Category : Mathematics
Languages : en
Pages : 292
Book Description
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
Modern Differential Geometry for Physicists
Author: Chris J. Isham
Publisher: Allied Publishers
ISBN: 9788177643169
Category : Geometry, Differential
Languages : en
Pages : 308
Book Description
Publisher: Allied Publishers
ISBN: 9788177643169
Category : Geometry, Differential
Languages : en
Pages : 308
Book Description
Tensors, Differential Forms, and Variational Principles
Author: David Lovelock
Publisher: Courier Corporation
ISBN: 048613198X
Category : Mathematics
Languages : en
Pages : 402
Book Description
Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.
Publisher: Courier Corporation
ISBN: 048613198X
Category : Mathematics
Languages : en
Pages : 402
Book Description
Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.
Geometrical Methods of Mathematical Physics
Author: Bernard F. Schutz
Publisher: Cambridge University Press
ISBN: 1107268141
Category : Science
Languages : en
Pages : 272
Book Description
In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.
Publisher: Cambridge University Press
ISBN: 1107268141
Category : Science
Languages : en
Pages : 272
Book Description
In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.
Manifolds, Tensors and Forms
Author: Paul Renteln
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343
Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343
Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.
Exterior Analysis
Author: Erdogan Suhubi
Publisher: Elsevier
ISBN: 0124159281
Category : Technology & Engineering
Languages : en
Pages : 780
Book Description
Exterior analysis uses differential forms (a mathematical technique) to analyze curves, surfaces, and structures. Exterior Analysis is a first-of-its-kind resource that uses applications of differential forms, offering a mathematical approach to solve problems in defining a precise measurement to ensure structural integrity. The book provides methods to study different types of equations and offers detailed explanations of fundamental theories and techniques to obtain concrete solutions to determine symmetry. It is a useful tool for structural, mechanical and electrical engineers, as well as physicists and mathematicians. - Provides a thorough explanation of how to apply differential equations to solve real-world engineering problems - Helps researchers in mathematics, science, and engineering develop skills needed to implement mathematical techniques in their research - Includes physical applications and methods used to solve practical problems to determine symmetry
Publisher: Elsevier
ISBN: 0124159281
Category : Technology & Engineering
Languages : en
Pages : 780
Book Description
Exterior analysis uses differential forms (a mathematical technique) to analyze curves, surfaces, and structures. Exterior Analysis is a first-of-its-kind resource that uses applications of differential forms, offering a mathematical approach to solve problems in defining a precise measurement to ensure structural integrity. The book provides methods to study different types of equations and offers detailed explanations of fundamental theories and techniques to obtain concrete solutions to determine symmetry. It is a useful tool for structural, mechanical and electrical engineers, as well as physicists and mathematicians. - Provides a thorough explanation of how to apply differential equations to solve real-world engineering problems - Helps researchers in mathematics, science, and engineering develop skills needed to implement mathematical techniques in their research - Includes physical applications and methods used to solve practical problems to determine symmetry
Tensor Analysis and Nonlinear Tensor Functions
Author: Yuriy I. Dimitrienko
Publisher: Springer Science & Business Media
ISBN: 9401732213
Category : Mathematics
Languages : en
Pages : 680
Book Description
Tensor Analysis and Nonlinear Tensor Functions embraces the basic fields of tensor calculus: tensor algebra, tensor analysis, tensor description of curves and surfaces, tensor integral calculus, the basis of tensor calculus in Riemannian spaces and affinely connected spaces, - which are used in mechanics and electrodynamics of continua, crystallophysics, quantum chemistry etc. The book suggests a new approach to definition of a tensor in space R3, which allows us to show a geometric representation of a tensor and operations on tensors. Based on this approach, the author gives a mathematically rigorous definition of a tensor as an individual object in arbitrary linear, Riemannian and other spaces for the first time. It is the first book to present a systematized theory of tensor invariants, a theory of nonlinear anisotropic tensor functions and a theory of indifferent tensors describing the physical properties of continua. The book will be useful for students and postgraduates of mathematical, mechanical engineering and physical departments of universities and also for investigators and academic scientists working in continuum mechanics, solid physics, general relativity, crystallophysics, quantum chemistry of solids and material science.
Publisher: Springer Science & Business Media
ISBN: 9401732213
Category : Mathematics
Languages : en
Pages : 680
Book Description
Tensor Analysis and Nonlinear Tensor Functions embraces the basic fields of tensor calculus: tensor algebra, tensor analysis, tensor description of curves and surfaces, tensor integral calculus, the basis of tensor calculus in Riemannian spaces and affinely connected spaces, - which are used in mechanics and electrodynamics of continua, crystallophysics, quantum chemistry etc. The book suggests a new approach to definition of a tensor in space R3, which allows us to show a geometric representation of a tensor and operations on tensors. Based on this approach, the author gives a mathematically rigorous definition of a tensor as an individual object in arbitrary linear, Riemannian and other spaces for the first time. It is the first book to present a systematized theory of tensor invariants, a theory of nonlinear anisotropic tensor functions and a theory of indifferent tensors describing the physical properties of continua. The book will be useful for students and postgraduates of mathematical, mechanical engineering and physical departments of universities and also for investigators and academic scientists working in continuum mechanics, solid physics, general relativity, crystallophysics, quantum chemistry of solids and material science.