Author: Hsu, Wynne
Publisher: IGI Global
ISBN: 1599043890
Category : Computers
Languages : en
Pages : 292
Book Description
"This book presents probable solutions when discovering the spatial sequence patterns by incorporating the information into the sequence of patterns, and introduces new classes of spatial sequence patterns, called flow and generalized spatio-temporal patterns, addressing different scenarios in spatio-temporal data by modeling them as graphs, providing a comprehensive synopsis on two successful partition-based algorithms designed by the authors"--Provided by publisher.
Temporal and Spatio-Temporal Data Mining
Author: Hsu, Wynne
Publisher: IGI Global
ISBN: 1599043890
Category : Computers
Languages : en
Pages : 292
Book Description
"This book presents probable solutions when discovering the spatial sequence patterns by incorporating the information into the sequence of patterns, and introduces new classes of spatial sequence patterns, called flow and generalized spatio-temporal patterns, addressing different scenarios in spatio-temporal data by modeling them as graphs, providing a comprehensive synopsis on two successful partition-based algorithms designed by the authors"--Provided by publisher.
Publisher: IGI Global
ISBN: 1599043890
Category : Computers
Languages : en
Pages : 292
Book Description
"This book presents probable solutions when discovering the spatial sequence patterns by incorporating the information into the sequence of patterns, and introduces new classes of spatial sequence patterns, called flow and generalized spatio-temporal patterns, addressing different scenarios in spatio-temporal data by modeling them as graphs, providing a comprehensive synopsis on two successful partition-based algorithms designed by the authors"--Provided by publisher.
Temporal Data Mining
Author: Theophano Mitsa
Publisher: CRC Press
ISBN: 1420089773
Category : Business & Economics
Languages : en
Pages : 398
Book Description
From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.
Publisher: CRC Press
ISBN: 1420089773
Category : Business & Economics
Languages : en
Pages : 398
Book Description
From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.
Temporal, Spatial, and Spatio-Temporal Data Mining
Author: John F. Roddick
Publisher: Springer Science & Business Media
ISBN: 3540417737
Category : Computers
Languages : en
Pages : 184
Book Description
This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Temporal, Spatial, and Spatio-Temporal Data Mining, TSDM 2000, held in Lyon, France in September 2000 during the PKDD 2000 conference. The ten revised full papers presented are complemented by an introductory workshop report and an updated bibliography for the emerging new field; this bibliography is organized in nine topical chapters and lists more than 150 entries. All in all, the volume reflects the state of the art in the area and sets the scene for future R & D activities.
Publisher: Springer Science & Business Media
ISBN: 3540417737
Category : Computers
Languages : en
Pages : 184
Book Description
This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Temporal, Spatial, and Spatio-Temporal Data Mining, TSDM 2000, held in Lyon, France in September 2000 during the PKDD 2000 conference. The ten revised full papers presented are complemented by an introductory workshop report and an updated bibliography for the emerging new field; this bibliography is organized in nine topical chapters and lists more than 150 entries. All in all, the volume reflects the state of the art in the area and sets the scene for future R & D activities.
Advanced Data Mining and Applications
Author: Xue Li
Publisher: Springer Science & Business Media
ISBN: 3540370250
Category : Computers
Languages : en
Pages : 1130
Book Description
Here are the proceedings of the 2nd International Conference on Advanced Data Mining and Applications, ADMA 2006, held in Xi'an, China, August 2006. The book presents 41 revised full papers and 74 revised short papers together with 4 invited papers. The papers are organized in topical sections on association rules, classification, clustering, novel algorithms, multimedia mining, sequential data mining and time series mining, web mining, biomedical mining, advanced applications, and more.
Publisher: Springer Science & Business Media
ISBN: 3540370250
Category : Computers
Languages : en
Pages : 1130
Book Description
Here are the proceedings of the 2nd International Conference on Advanced Data Mining and Applications, ADMA 2006, held in Xi'an, China, August 2006. The book presents 41 revised full papers and 74 revised short papers together with 4 invited papers. The papers are organized in topical sections on association rules, classification, clustering, novel algorithms, multimedia mining, sequential data mining and time series mining, web mining, biomedical mining, advanced applications, and more.
Temporal, Spatial, and Spatio-Temporal Data Mining
Author: John F. Roddick
Publisher:
ISBN: 9783662180976
Category :
Languages : en
Pages : 180
Book Description
Publisher:
ISBN: 9783662180976
Category :
Languages : en
Pages : 180
Book Description
Statistics for Spatio-Temporal Data
Author: Noel Cressie
Publisher: John Wiley & Sons
ISBN: 1119243041
Category : Mathematics
Languages : en
Pages : 612
Book Description
Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.
Publisher: John Wiley & Sons
ISBN: 1119243041
Category : Mathematics
Languages : en
Pages : 612
Book Description
Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.
Knowledge Discovery from Sensor Data
Author: Mohamed Medhat Gaber
Publisher: Springer Science & Business Media
ISBN: 3642125182
Category : Computers
Languages : en
Pages : 235
Book Description
This book contains thoroughly refereed extended papers from the Second International Workshop on Knowledge Discovery from Sensor Data, Sensor-KDD 2008, held in Las Vegas, NV, USA, in August 2008. The 12 revised papers presented together with an invited paper were carefully reviewed and selected from numerous submissions. The papers feature important aspects of knowledge discovery from sensor data, e.g., data mining for diagnostic debugging; incremental histogram distribution for change detection; situation-aware adaptive visualization; WiFi mining; mobile sensor data mining; incremental anomaly detection; and spatiotemporal neighborhood discovery for sensor data.
Publisher: Springer Science & Business Media
ISBN: 3642125182
Category : Computers
Languages : en
Pages : 235
Book Description
This book contains thoroughly refereed extended papers from the Second International Workshop on Knowledge Discovery from Sensor Data, Sensor-KDD 2008, held in Las Vegas, NV, USA, in August 2008. The 12 revised papers presented together with an invited paper were carefully reviewed and selected from numerous submissions. The papers feature important aspects of knowledge discovery from sensor data, e.g., data mining for diagnostic debugging; incremental histogram distribution for change detection; situation-aware adaptive visualization; WiFi mining; mobile sensor data mining; incremental anomaly detection; and spatiotemporal neighborhood discovery for sensor data.
Spatiotemporal Analysis of Extreme Hydrological Events
Author: Gerald Corzo
Publisher: Elsevier
ISBN: 0128117311
Category : Science
Languages : en
Pages : 194
Book Description
Spatio-temporal Analysis of Extreme Hydrological Events offers an extensive view of the experiences and applications of the latest developments and methodologies for analyzing and understanding extreme environmental and hydrological events. The book addresses the topic using spatio-temporal methods, such as space-time geostatistics, machine learning, statistical theory, hydrological modelling, neural network and evolutionary algorithms. This important resource for both hydrologists and statisticians interested in the framework of spatial and temporal analysis of hydrological events will provide users with an enhanced understanding of the relationship between magnitude, dynamics and the probability of extreme hydrological events. - Presents spatio-temporal processes, including multivariate dynamic modelling - Provides varying methodological approaches, giving the readers multiple hydrological modelling information to use in their work - Includes a variety of case studies making the context of the book relatable to everyday working situations
Publisher: Elsevier
ISBN: 0128117311
Category : Science
Languages : en
Pages : 194
Book Description
Spatio-temporal Analysis of Extreme Hydrological Events offers an extensive view of the experiences and applications of the latest developments and methodologies for analyzing and understanding extreme environmental and hydrological events. The book addresses the topic using spatio-temporal methods, such as space-time geostatistics, machine learning, statistical theory, hydrological modelling, neural network and evolutionary algorithms. This important resource for both hydrologists and statisticians interested in the framework of spatial and temporal analysis of hydrological events will provide users with an enhanced understanding of the relationship between magnitude, dynamics and the probability of extreme hydrological events. - Presents spatio-temporal processes, including multivariate dynamic modelling - Provides varying methodological approaches, giving the readers multiple hydrological modelling information to use in their work - Includes a variety of case studies making the context of the book relatable to everyday working situations
Spatial and Spatio-temporal Bayesian Models with R - INLA
Author: Marta Blangiardo
Publisher: John Wiley & Sons
ISBN: 1118326555
Category : Mathematics
Languages : en
Pages : 322
Book Description
Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations
Publisher: John Wiley & Sons
ISBN: 1118326555
Category : Mathematics
Languages : en
Pages : 322
Book Description
Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations
Spatio-Temporal Data Streams
Author: Zdravko Galić
Publisher: Springer
ISBN: 1493965751
Category : Computers
Languages : en
Pages : 116
Book Description
This SpringerBrief presents the fundamental concepts of a specialized class of data stream, spatio-temporal data streams, and demonstrates their distributed processing using Big Data frameworks and platforms. It explores a consistent framework which facilitates a thorough understanding of all different facets of the technology, from basic definitions to state-of-the-art techniques. Key topics include spatio-temporal continuous queries, distributed stream processing, SQL-like language embedding, and trajectory stream clustering. Over the course of the book, the reader will become familiar with spatio-temporal data streams management and data flow processing, which enables the analysis of huge volumes of location-aware continuous data streams. Applications range from mobile object tracking and real-time intelligent transportation systems to traffic monitoring and complex event processing. Spatio-Temporal Data Streams is a valuable resource for researchers studying spatio-temporal data streams and Big Data analytics, as well as data engineers and data scientists solving data management and analytics problems associated with this class of data.
Publisher: Springer
ISBN: 1493965751
Category : Computers
Languages : en
Pages : 116
Book Description
This SpringerBrief presents the fundamental concepts of a specialized class of data stream, spatio-temporal data streams, and demonstrates their distributed processing using Big Data frameworks and platforms. It explores a consistent framework which facilitates a thorough understanding of all different facets of the technology, from basic definitions to state-of-the-art techniques. Key topics include spatio-temporal continuous queries, distributed stream processing, SQL-like language embedding, and trajectory stream clustering. Over the course of the book, the reader will become familiar with spatio-temporal data streams management and data flow processing, which enables the analysis of huge volumes of location-aware continuous data streams. Applications range from mobile object tracking and real-time intelligent transportation systems to traffic monitoring and complex event processing. Spatio-Temporal Data Streams is a valuable resource for researchers studying spatio-temporal data streams and Big Data analytics, as well as data engineers and data scientists solving data management and analytics problems associated with this class of data.