Author: Dennis W. Sunal
Publisher: IAP
ISBN: 1641136588
Category : Science
Languages : en
Pages : 264
Book Description
Physics Teaching and Learning: Challenging the Paradigm, RISE Volume 8, focuses on research contributions challenging the basic assumptions, ways of thinking, and practices commonly accepted in physics education. Teaching physics involves multifaceted, research-based, value added strategies designed to improve academic engagement and depth of learning. In this volume, researchers, teaching and curriculum reformers, and reform implementers discuss a range of important issues. The volume should be considered as a first step in thinking through what physics teaching and physics learning might address in teacher preparation programs, in-service professional development programs, and in classrooms. To facilitate thinking about research-based physics teaching and learning each chapter in the volume was organized around five common elements: 1. A significant review of research in the issue or problem area. 2. Themes addressed are relevant for the teaching and learning of K-16 science 3. Discussion of original research by the author(s) addressing the major theme of the chapter. 4. Bridge gaps between theory and practice and/or research and practice. 5. Concerns and needs are addressed of school/community context stakeholders including students, teachers, parents, administrators, and community members.
Physics Teaching and Learning
Author: Dennis W. Sunal
Publisher: IAP
ISBN: 1641136588
Category : Science
Languages : en
Pages : 264
Book Description
Physics Teaching and Learning: Challenging the Paradigm, RISE Volume 8, focuses on research contributions challenging the basic assumptions, ways of thinking, and practices commonly accepted in physics education. Teaching physics involves multifaceted, research-based, value added strategies designed to improve academic engagement and depth of learning. In this volume, researchers, teaching and curriculum reformers, and reform implementers discuss a range of important issues. The volume should be considered as a first step in thinking through what physics teaching and physics learning might address in teacher preparation programs, in-service professional development programs, and in classrooms. To facilitate thinking about research-based physics teaching and learning each chapter in the volume was organized around five common elements: 1. A significant review of research in the issue or problem area. 2. Themes addressed are relevant for the teaching and learning of K-16 science 3. Discussion of original research by the author(s) addressing the major theme of the chapter. 4. Bridge gaps between theory and practice and/or research and practice. 5. Concerns and needs are addressed of school/community context stakeholders including students, teachers, parents, administrators, and community members.
Publisher: IAP
ISBN: 1641136588
Category : Science
Languages : en
Pages : 264
Book Description
Physics Teaching and Learning: Challenging the Paradigm, RISE Volume 8, focuses on research contributions challenging the basic assumptions, ways of thinking, and practices commonly accepted in physics education. Teaching physics involves multifaceted, research-based, value added strategies designed to improve academic engagement and depth of learning. In this volume, researchers, teaching and curriculum reformers, and reform implementers discuss a range of important issues. The volume should be considered as a first step in thinking through what physics teaching and physics learning might address in teacher preparation programs, in-service professional development programs, and in classrooms. To facilitate thinking about research-based physics teaching and learning each chapter in the volume was organized around five common elements: 1. A significant review of research in the issue or problem area. 2. Themes addressed are relevant for the teaching and learning of K-16 science 3. Discussion of original research by the author(s) addressing the major theme of the chapter. 4. Bridge gaps between theory and practice and/or research and practice. 5. Concerns and needs are addressed of school/community context stakeholders including students, teachers, parents, administrators, and community members.
Teaching Einsteinian Physics in Schools
Author: Magdalena Kersting
Publisher: Routledge
ISBN: 1000374130
Category : Education
Languages : en
Pages : 499
Book Description
In our world today, scientists and technologists speak one language of reality. Everyone else, whether they be prime ministers, lawyers, or primary school teachers speak an outdated Newtonian language of reality. While Newton saw time and space as rigid and absolute, Einstein showed that time is relative – it depends on height and velocity – and that space can stretch and distort. The modern Einsteinian perspective represents a significant paradigm shift compared with the Newtonian paradigm that underpins most of the school education today. Research has shown that young learners quickly access and accept Einsteinian concepts and the modern language of reality. Students enjoy learning about curved space, photons, gravitational waves, and time dilation; often, they ask for more! A consistent education within the Einsteinian paradigm requires rethinking of science education across the entire school curriculum, and this is now attracting attention around the world. This book brings together a coherent set of chapters written by leading experts in the field of Einsteinian physics education. The book begins by exploring the fundamental concepts of space, time, light, and gravity and how teachers can introduce these topics at an early age. A radical change in the curriculum requires new learning instruments and innovative instructional approaches. Throughout the book, the authors emphasise and discuss evidence-based approaches to Einsteinian concepts, including computer- based tools, geometrical methods, models and analogies, and simplified mathematical treatments. Teaching Einsteinian Physics in Schools is designed as a resource for teacher education students, primary and secondary science teachers, and for anyone interested in a scientifically accurate description of physical reality at a level appropriate for school education.
Publisher: Routledge
ISBN: 1000374130
Category : Education
Languages : en
Pages : 499
Book Description
In our world today, scientists and technologists speak one language of reality. Everyone else, whether they be prime ministers, lawyers, or primary school teachers speak an outdated Newtonian language of reality. While Newton saw time and space as rigid and absolute, Einstein showed that time is relative – it depends on height and velocity – and that space can stretch and distort. The modern Einsteinian perspective represents a significant paradigm shift compared with the Newtonian paradigm that underpins most of the school education today. Research has shown that young learners quickly access and accept Einsteinian concepts and the modern language of reality. Students enjoy learning about curved space, photons, gravitational waves, and time dilation; often, they ask for more! A consistent education within the Einsteinian paradigm requires rethinking of science education across the entire school curriculum, and this is now attracting attention around the world. This book brings together a coherent set of chapters written by leading experts in the field of Einsteinian physics education. The book begins by exploring the fundamental concepts of space, time, light, and gravity and how teachers can introduce these topics at an early age. A radical change in the curriculum requires new learning instruments and innovative instructional approaches. Throughout the book, the authors emphasise and discuss evidence-based approaches to Einsteinian concepts, including computer- based tools, geometrical methods, models and analogies, and simplified mathematical treatments. Teaching Einsteinian Physics in Schools is designed as a resource for teacher education students, primary and secondary science teachers, and for anyone interested in a scientifically accurate description of physical reality at a level appropriate for school education.
Concepts, Strategies and Models to Enhance Physics Teaching and Learning
Author: Eilish McLoughlin
Publisher: Springer
ISBN: 3030181375
Category : Science
Languages : en
Pages : 247
Book Description
This book discusses novel research on and practices in the field of physics teaching and learning. It gathers selected high-quality studies that were presented at the GIREP-ICPE-EPEC 2017 conference, which was jointly organised by the International Research Group on Physics Teaching (GIREP); European Physical Society – Physics Education Division, and the Physics Education Commission of the International Union of Pure and Applied Physics (IUPAP). The respective chapters address a wide variety of topics and approaches, pursued in various contexts and settings, all of which represent valuable contributions to the field of physics education research. Examples include the design of curricula and strategies to develop student competencies—including knowledge, skills, attitudes and values; workshop approaches to teacher education; and pedagogical strategies used to engage and motivate students. This book shares essential insights into current research on physics education and will be of interest to physics teachers, teacher educators and physics education researchers around the world who are working to combine research and practice in physics teaching and learning.
Publisher: Springer
ISBN: 3030181375
Category : Science
Languages : en
Pages : 247
Book Description
This book discusses novel research on and practices in the field of physics teaching and learning. It gathers selected high-quality studies that were presented at the GIREP-ICPE-EPEC 2017 conference, which was jointly organised by the International Research Group on Physics Teaching (GIREP); European Physical Society – Physics Education Division, and the Physics Education Commission of the International Union of Pure and Applied Physics (IUPAP). The respective chapters address a wide variety of topics and approaches, pursued in various contexts and settings, all of which represent valuable contributions to the field of physics education research. Examples include the design of curricula and strategies to develop student competencies—including knowledge, skills, attitudes and values; workshop approaches to teacher education; and pedagogical strategies used to engage and motivate students. This book shares essential insights into current research on physics education and will be of interest to physics teachers, teacher educators and physics education researchers around the world who are working to combine research and practice in physics teaching and learning.
Teaching Physics with the Physics Suite CD
Author: Edward F. Redish
Publisher: John Wiley & Sons
ISBN:
Category : Education
Languages : en
Pages : 232
Book Description
Written by one of the leaders of the Physics Education Research (PER) movement, Teaching Physics is a book for anyone interested in learning how to become a more effective physics teacher. Rather than reviewing specific topics in physics with hints for how to teach them and lists of common student difficulties, Teaching Physics presents a variety of tools for improving both the teaching and learning of physics--from new kinds of homework and exam problems, to surveys for figuring out what has happened in your class, to tools for taking and analyzing data using computers and video. Teaching Physics is a companion guide to using the Physics Suite, an integrated collection of research-based instructional materials for lecture, laboratory, recitation, and workshop/studio environments. But even if you don't use a single element from the Suite, Teaching Physics can help you enhance your students' learning experience.
Publisher: John Wiley & Sons
ISBN:
Category : Education
Languages : en
Pages : 232
Book Description
Written by one of the leaders of the Physics Education Research (PER) movement, Teaching Physics is a book for anyone interested in learning how to become a more effective physics teacher. Rather than reviewing specific topics in physics with hints for how to teach them and lists of common student difficulties, Teaching Physics presents a variety of tools for improving both the teaching and learning of physics--from new kinds of homework and exam problems, to surveys for figuring out what has happened in your class, to tools for taking and analyzing data using computers and video. Teaching Physics is a companion guide to using the Physics Suite, an integrated collection of research-based instructional materials for lecture, laboratory, recitation, and workshop/studio environments. But even if you don't use a single element from the Suite, Teaching Physics can help you enhance your students' learning experience.
The Big Ideas in Physics and How to Teach Them
Author: Ben Rogers
Publisher: Routledge
ISBN: 1315305429
Category : Education
Languages : en
Pages : 136
Book Description
The Big Ideas in Physics and How to Teach Them provides all of the knowledge and skills you need to teach physics effectively at secondary level. Each chapter provides the historical narrative behind a Big Idea, explaining its significance, the key figures behind it, and its place in scientific history. Accompanied by detailed ready-to-use lesson plans and classroom activities, the book expertly fuses the ‘what to teach’ and the ‘how to teach it', creating an invaluable resource which contains not only a thorough explanation of physics, but also the applied pedagogy to ensure its effective translation to students in the classroom. Including a wide range of teaching strategies, archetypal assessment questions and model answers, the book tackles misconceptions and offers succinct and simple explanations of complex topics. Each of the five big ideas in physics are covered in detail: electricity forces energy particles the universe. Aimed at new and trainee physics teachers, particularly non-specialists, this book provides the knowledge and skills you need to teach physics successfully at secondary level, and will inject new life into your physics teaching.
Publisher: Routledge
ISBN: 1315305429
Category : Education
Languages : en
Pages : 136
Book Description
The Big Ideas in Physics and How to Teach Them provides all of the knowledge and skills you need to teach physics effectively at secondary level. Each chapter provides the historical narrative behind a Big Idea, explaining its significance, the key figures behind it, and its place in scientific history. Accompanied by detailed ready-to-use lesson plans and classroom activities, the book expertly fuses the ‘what to teach’ and the ‘how to teach it', creating an invaluable resource which contains not only a thorough explanation of physics, but also the applied pedagogy to ensure its effective translation to students in the classroom. Including a wide range of teaching strategies, archetypal assessment questions and model answers, the book tackles misconceptions and offers succinct and simple explanations of complex topics. Each of the five big ideas in physics are covered in detail: electricity forces energy particles the universe. Aimed at new and trainee physics teachers, particularly non-specialists, this book provides the knowledge and skills you need to teach physics successfully at secondary level, and will inject new life into your physics teaching.
Teaching Introductory Physics
Author: Arnold B. Arons
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 812
Book Description
This book is an invaluable resource for physics teachers. It contains an updated version of the author's A Guide to Introductory Physics Teaching (1990), Homework and Test Questions (1994), and a previously unpublished monograph "Introduction to Classical Conservation Laws."
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 812
Book Description
This book is an invaluable resource for physics teachers. It contains an updated version of the author's A Guide to Introductory Physics Teaching (1990), Homework and Test Questions (1994), and a previously unpublished monograph "Introduction to Classical Conservation Laws."
Five Easy Lessons
Author: Randall Dewey Knight
Publisher: Pearson
ISBN:
Category : Business & Economics
Languages : en
Pages : 410
Book Description
This widely admired standalone guide is packed with creative tips on how to enhance and expand your physics class instruction techniques. It's an invaluable companion for novice and veteran professors teaching any physics course.
Publisher: Pearson
ISBN:
Category : Business & Economics
Languages : en
Pages : 410
Book Description
This widely admired standalone guide is packed with creative tips on how to enhance and expand your physics class instruction techniques. It's an invaluable companion for novice and veteran professors teaching any physics course.
Teaching School Physics
Author: John L. Lewis
Publisher: Harmondsworth : Penguin
ISBN:
Category : Science
Languages : en
Pages : 422
Book Description
A UNESCO source book.
Publisher: Harmondsworth : Penguin
ISBN:
Category : Science
Languages : en
Pages : 422
Book Description
A UNESCO source book.
Mathematics in Physics Education
Author: Gesche Pospiech
Publisher: Springer
ISBN: 3030046273
Category : Science
Languages : en
Pages : 383
Book Description
This book is about mathematics in physics education, the difficulties students have in learning physics, and the way in which mathematization can help to improve physics teaching and learning. The book brings together different teaching and learning perspectives, and addresses both fundamental considerations and practical aspects. Divided into four parts, the book starts out with theoretical viewpoints that enlighten the interplay of physics and mathematics also including historical developments. The second part delves into the learners’ perspective. It addresses aspects of the learning by secondary school students as well as by students just entering university, or teacher students. Topics discussed range from problem solving over the role of graphs to integrated mathematics and physics learning. The third part includes a broad range of subjects from teachers’ views and knowledge, the analysis of classroom discourse and an evaluated teaching proposal. The last part describes approaches that take up mathematization in a broader interpretation, and includes the presentation of a model for physics teachers’ pedagogical content knowledge (PCK) specific to the role of mathematics in physics.
Publisher: Springer
ISBN: 3030046273
Category : Science
Languages : en
Pages : 383
Book Description
This book is about mathematics in physics education, the difficulties students have in learning physics, and the way in which mathematization can help to improve physics teaching and learning. The book brings together different teaching and learning perspectives, and addresses both fundamental considerations and practical aspects. Divided into four parts, the book starts out with theoretical viewpoints that enlighten the interplay of physics and mathematics also including historical developments. The second part delves into the learners’ perspective. It addresses aspects of the learning by secondary school students as well as by students just entering university, or teacher students. Topics discussed range from problem solving over the role of graphs to integrated mathematics and physics learning. The third part includes a broad range of subjects from teachers’ views and knowledge, the analysis of classroom discourse and an evaluated teaching proposal. The last part describes approaches that take up mathematization in a broader interpretation, and includes the presentation of a model for physics teachers’ pedagogical content knowledge (PCK) specific to the role of mathematics in physics.
Science Of Learning Physics, The: Cognitive Strategies For Improving Instruction
Author: Jose Mestre
Publisher: World Scientific
ISBN: 9811226563
Category : Science
Languages : en
Pages : 211
Book Description
This book on the teaching and learning of physics is intended for college-level instructors, but high school instructors might also find it very useful.Some ideas found in this book might be a small 'tweak' to existing practices whereas others require more substantial revisions to instruction. The discussions of student learning herein are based on research evidence accumulated over decades from various fields, including cognitive psychology, educational psychology, the learning sciences, and discipline-based education research including physics education research. Likewise, the teaching suggestions are also based on research findings. As for any other scientific endeavor, physics education research is an empirical field where experiments are performed, data are analyzed and conclusions drawn. Evidence from such research is then used to inform physics teaching and learning.While the focus here is on introductory physics taken by most students when they are enrolled, however, the ideas can also be used to improve teaching and learning in both upper-division undergraduate physics courses, as well as graduate-level courses. Whether you are new to teaching physics or a seasoned veteran, various ideas and strategies presented in the book will be suitable for active consideration.
Publisher: World Scientific
ISBN: 9811226563
Category : Science
Languages : en
Pages : 211
Book Description
This book on the teaching and learning of physics is intended for college-level instructors, but high school instructors might also find it very useful.Some ideas found in this book might be a small 'tweak' to existing practices whereas others require more substantial revisions to instruction. The discussions of student learning herein are based on research evidence accumulated over decades from various fields, including cognitive psychology, educational psychology, the learning sciences, and discipline-based education research including physics education research. Likewise, the teaching suggestions are also based on research findings. As for any other scientific endeavor, physics education research is an empirical field where experiments are performed, data are analyzed and conclusions drawn. Evidence from such research is then used to inform physics teaching and learning.While the focus here is on introductory physics taken by most students when they are enrolled, however, the ideas can also be used to improve teaching and learning in both upper-division undergraduate physics courses, as well as graduate-level courses. Whether you are new to teaching physics or a seasoned veteran, various ideas and strategies presented in the book will be suitable for active consideration.