Systems and Methods for Creation of Conducting Networks of Magnetic Particles Through Dynamic Self-assembly Process PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Systems and Methods for Creation of Conducting Networks of Magnetic Particles Through Dynamic Self-assembly Process PDF full book. Access full book title Systems and Methods for Creation of Conducting Networks of Magnetic Particles Through Dynamic Self-assembly Process by . Download full books in PDF and EPUB format.

Systems and Methods for Creation of Conducting Networks of Magnetic Particles Through Dynamic Self-assembly Process

Systems and Methods for Creation of Conducting Networks of Magnetic Particles Through Dynamic Self-assembly Process PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Self-assembly of magnetic microparticles in AC magnetic fields. Excitation of the system by an AC magnetic field provides a variety of patterns that can be controlled by adjusting the frequency and the amplitude of the field. At low particle densities the low-frequency magnetic excitation favors cluster phase formation, while high frequency excitation favors chains and netlike structures. For denser configurations, an abrupt transition to the network phase was obtained.

Systems and Methods for Creation of Conducting Networks of Magnetic Particles Through Dynamic Self-assembly Process

Systems and Methods for Creation of Conducting Networks of Magnetic Particles Through Dynamic Self-assembly Process PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Self-assembly of magnetic microparticles in AC magnetic fields. Excitation of the system by an AC magnetic field provides a variety of patterns that can be controlled by adjusting the frequency and the amplitude of the field. At low particle densities the low-frequency magnetic excitation favors cluster phase formation, while high frequency excitation favors chains and netlike structures. For denser configurations, an abrupt transition to the network phase was obtained.

Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles

Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles PDF Author: Sebastian Ekeroth
Publisher: Linköping University Electronic Press
ISBN: 9176850099
Category :
Languages : en
Pages : 58

Book Description
Nanomaterials are important tools for enabling technological progress as they can provide dramatically different properties as compared to the bulk counterparts. The field of nanoparticles is one of the most investigated within nanomaterials, thanks to the existing, relatively simple, means of manufacturing. In this thesis, high-power pulsed hollow cathode sputtering is used to nucleate and grow magnetic nanoparticles in a plasma. This sputtering technique provides a high degree of ionization of the sputtered material, which has previously been shown to aid in the growth of the nanoparticles. The magnetic properties of the particles are utilized and makes it possible for the grown particles to act as building blocks for self-assembly into more sophisticated nano structures, particularly when an external magnetic field is applied. These structures created are termed “nanowires” or “nanotrusses”, depending on the level of branching and inter-linking that occurs. Several different elements have been investigated in this thesis. In a novel approach, it is shown how nanoparticles with more advanced structures, and containing material from two hollow cathodes, can be fabricated using high-power pulses. The dual-element particles are achieved by using two distinct and individual elemental cathodes, and a pulse process that allows tuning of individual pulses separately to them. Nanoparticles grown and investigated are Fe, Ni, Pt, Fe-Ni and Ni-Pt. Alternatively, the addition of oxygen to the process allows the formation of oxide or hybrid metal oxide – metal particles. For all nanoparticles containing several elements, it is demonstrated that the stoichiometry can be easily varied, either by the amount of reactive gas let into the process or by tuning the amount of sputtered material through adjusting the electric power supplied to the different cathodes. One aim of the presented work is to find a suitable material for the use as a catalyst in the production of H2 gas through the process of water splitting. H2 is a good candidate to replace fossil fuels as an energy carrier. However, rare elements (such as Ir or Pt) needs to be used as the catalyst, otherwise a high overpotential is required for the splitting to occur, leading to a low efficiency. This work demonstrates a possible route to avoid this, by using nanomaterials to increase the surface-to-volume ratio, as well as optimizing the elemental ratio between different materials to lower the amount of noble elements required.

Bulletin of the Atomic Scientists

Bulletin of the Atomic Scientists PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 88

Book Description
The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.

Magnetic Nanoparticle Field Directed Self-assembly

Magnetic Nanoparticle Field Directed Self-assembly PDF Author: Ryan Michael Schmidt
Publisher:
ISBN:
Category : Block copolymers
Languages : en
Pages : 153

Book Description
Directed self-assembly of nanomaterials via external fields is an attractive processing tool for industry as it is inherently inexpensive and flexible. The self-assembly of magnetic nanoparticles in particular has gained much recent interest for applications ranging from biomedical imaging and targeted cancer therapy to ferrofluid mechanical damping devices, that rely on the state of aggregation and alignment of the nanoparticles. We utilize an oil-water platform to directly observe directed self-assembly of magnetic nanoparticles that are field ordered into two-dimensional mesostructures through the fossilized liquid assembly method. Our system consisted of polymer-coated iron-oxide nanoparticles which were assembled at the interface between a crosslinkable hydrophobic monomer oil, and water through the use of external magnetic fields, and then cured with UV light. In this study, entire magnetic flux field lines in various geometrical configurations were successfully modeled and mapped out by the magnetic nanoparticles, both in-plane and in perpendicular orientations utilizing FLA. As the microscopic behavior of magnetic nanoparticles is known through this first study, further work can then be conducted through the assembly of block copolymer/magnetic nanoparticle nanocomposites. The morphology of neat self-assembled block copolymers have been extensively studied and it has been proven that the molecular weight, volume fraction of the components, and the degree of segment incompatibility are the three independent parameters used to determine equilibrium morphologies. The assembled orientations of lamellar and cylindrical morphologies in particular develop specific directionalities depending on the natural interactions of the blocks with the substrate and surface. It has been shown that treatments such as UV-Ozone treatment of the substrate, mechanical shear, or electrical fields can force this directionality to be altered, however few methods have been developed to readily alter preferential morphologies through the use of magnetic fields. In order to provide preliminary results toward the validity of a magnetically driven reorientation process, systems of polystyrene-b-poly(methylmethacrylate) with varying molecular weights were loaded with up to 1% polystyrene coated cobalt nanoparticles. This study successfully showed that the particles can be loaded into the block copolymers without disrupting the morphology of the block copolymers, and also provided initial results that this method is plausible.

Materials Nanoarchitectonics

Materials Nanoarchitectonics PDF Author: Katsuhiko Ariga
Publisher: Elsevier
ISBN: 0323994733
Category : Technology & Engineering
Languages : en
Pages : 648

Book Description
Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems Discusses novel approaches towards the creation of complex multiscale architectures

Driving Self-assembly and Emergent Dynamics in Colloidal Suspensions by Time-dependent Magnetic Fields

Driving Self-assembly and Emergent Dynamics in Colloidal Suspensions by Time-dependent Magnetic Fields PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In this review we discuss recent research on driving self assembly of magnetic particle suspensions subjected to alternating magnetic fields. The variety of structures and effects that can be induced in such systems is remarkably broad due to the large number of variables involved. The alternating field can be uniaxial, biaxial or triaxial, the particles can be spherical or anisometric, and the suspension can be dispersed throughout a volume or confined to a soft interface. In the simplest case the field drives the static or quasi-static assembly of unusual particle structures, such as sheets, networks and open-cell foams. More complex, emergent collective behaviors evolve in systems that can follow the time-dependent field vector. In these cases energy is continuously injected into the system and striking °ow patterns and structures can arise. In fluid volumes these include the formation of advection and vortex lattices. At air-liquid and liquid-liquid interfaces striking dynamic particle assemblies emerge due to the particle-mediated coupling of the applied field to surface excitations. These out-of-equilibrium interface assemblies exhibit a number of remarkable phenomena, including self-propulsion and surface mixing. In addition to discussing various methods of driven self assembly in magnetic suspensions, some of the remarkable properties of these novel materials are described.

Field Assisted Self Assembly for Preferential Vertical Alignment of Particles and Phases Using a Novel Roll-to-roll Processing Line

Field Assisted Self Assembly for Preferential Vertical Alignment of Particles and Phases Using a Novel Roll-to-roll Processing Line PDF Author: Saurabh Batra
Publisher:
ISBN:
Category : Capacitors
Languages : en
Pages : 208

Book Description
The addition of nanoparticles in polymeric systems offers potential for new and unique material properties at low particle concentrations. This field has been heavily explored for mechanical and diffusion property enhancements, although with limited success. Many of these nanoparticles exhibit high anisotropy in their properties of interest including thermal conductivity, diffusivity, capacitance, optical, compressive strength, etc. However, traditional processing methods do not take advantage of these anisotropies as they are unable to orient the particles in the thickness direction. Therefore, directed assembly techniques are required. While a broad understanding of field assisted assembly techniques has already been established in the scientific community, there are still numerous practical questions that emerge in specific systems. The two most important things which lack in the previous literature are: i) ability to use field assisted assembly techniques in a roll-to-roll manufacturing process to create reconfigurable spatially oriented structures and ii) utilizing these assembly techniques for vertical orientation of particles, since most of the membranes and films for electronic devices require "Z"-oriented structures. This research, hence, focuses on increasing the understanding of field assisted assembly techniques to create a roll-to-roll process and "Z"-oriented particle chains using electric field. The first part of this study focused on the design and development of the roll-to-roll processing line and showed validating experiments on the performance of the machine at each zone which include electric, magnetic and thermal gradient zones. This was done to investigate general principles governing "Z orientation" behavior to produce "defect free" functional films with directionally enhanced properties. Alignment of clay platelets through electric field, magnetic nanowires with magnetic field, and directional crystallization of semicrystalline polymer using thermal gradient zone were done for validation. In the second study, fast transient evolution of electric field assisted thickness "Z"-direction orientation and assembly of clay particles was studied using an instrumented real time system that simultaneously measures in-plane and out of plane birefringence. The optical anisotropy master curves were developed that connect the exposure time and electric field strength with orientation, using a superposition principle. Z-oriented nanocomposite films manufactured through the R2R process showed enhanced through thickness ionic conductivity useful for membranes of batteries and fuel cells. The final study was divided into two parts and dealt with the manipulation of barium titanate nanoparticles to create flexible polymer films for ultra-capacitors. Application of AC electric fields in a well dispersed solution led to the formation of "Z"-oriented chains of BaTiO3 with single strands due to dielectrophoresis, whereas a formation of skin layer was observed with the application of DC fields. The first part of this study focused on the effect of frequency and viscosity on the alignment characteristics, and the second part focused on the effect of particle size.

Emergence of Reconfigurable Wires and Spinners Via Dynamic Self-assembly

Emergence of Reconfigurable Wires and Spinners Via Dynamic Self-assembly PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Dissipative colloidal materials use energy to generate and maintain structural complexity. The energy injection rate, and properties of the environment are important control parameters that influence the outcome of dynamic self-assembly. Here we demonstrate that dispersions of magnetic microparticles confined at the air-liquid interface, and energized by a uniaxial in-plane alternating magnetic field, self-assemble into a variety of structures that range from pulsating clusters and single-particle-thick wires to dynamic arrays of spinners (self-assembled short chains) rotating in either direction. The spinners emerge via spontaneous breaking of the uniaxial symmetry of the energizing magnetic field. Demonstration of the formation and disaggregation of particle assemblies suggests strategies to form new meso-scale structures with the potential to perform functions such as mixing and sensing.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 464

Book Description


Controlled Synthesis of Magnetic Particles

Controlled Synthesis of Magnetic Particles PDF Author: Su Kyung Suh (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 112

Book Description
Magnetic particles have been used for many applications demanding a broad range of particles morphologies and chemistries. Superparamagnetism is advantageous over ferromagnetism because it enables us to control and recover magnetic nanoparticles during and after chemical processing. Superparamagnetic particles have an oriented magnetic moment under a magnetic field but lose this behavior in the absence of a field. Ferromagnetic materials can be superparamagnetic when they consist of a single size domain, which is on the order of 10s of nanometers. However, since the magnetic force is proportional to the volume of the particle, one needs to apply higher gradient of magnetic field to recover smaller particles. Therefore, large particles are preferred for easy manipulation using external forces. For this reason, the synthesis of large, superparamagnetic particles is very important and is desirable for future applications. The purpose of this work is (1) to examine the three synthesis methods of superparamagnetic units, (2) to understand the behavior of particles created using these methods as well as the synthesis mechanisms, and (3) to investigate the potential applications of these particles. Large paramagnetic particles can be made by assembling superparamagnetic nanoparticles. We developed a method for the process-dependent clustering of monodisperse magnetic nanoparticles using a solvent evaporation method from solid-in-oilin- water (S/O/W) type emulsions. When polymers that are incompatible with the nanoparticle coatings were included in the emulsion formulation, monolayer- and multilayer-coated polymer beads and partially coated Janus beads were prepared. The precise number of nanoparticle layers depended on the polymer/magnetic nanoparticle ratio in the oil droplet phase parent emulsion. The magnetic nanoparticle superstructures responded to the application of a modest magnetic field by forming regular chains with alignment of nonuniform structures (e.g., toroids and Janus beads) in accordance with theoretical predictions and with observations in other systems. In addition, we synthesized non-spherical magnetic microparticles with multiple functionalities, shapes and chemistries. Particle synthesis is performed in two steps; polymeric microparticles homogenously functionalized with carboxyl groups were generated AA % using stop-flow lithography, and then in situ co-precipitation was used to grow magnetic nanoparticle at these carboxyl sites. With successive growth of magnetic nanoparticles, we obtained polymeric particles with saturations magnetization up to 42 emu per gram of microparticle, which is significantly greater than what can be obtained commercially. We also investigated the physical properties of magnetic nanoparticles grown in polymeric microparticles, and provide an explanation of the properties. Lastly, we used experimentation and modeling to investigate the synthesis of opaque microparticles made via stop-flow lithography. Opaque magnetic beads incorporated into hydrogel microparticles during synthesis changed the height and the degree of cross-linking of the polymer matrices formed. The effect of the concentration of the opaque material on the particle height was determined experimentally, and agreed well with model predictions based on the photopolymerization process over a wide range of UV absorbance. We also created particles with two independent anisotropies, magnetic and geometric, by applying magnetic fields during particle synthesis. Our work provides a platform for rational design of lithographic patterned opaque particles and also a new class of structured magnetic microparticles. Overall, this work demonstrates three strategies for creating magnetic substrates containing superparamagnetic nanoparticles and characterization of their resulting properties.