Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at SNN PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at SNN PDF full book. Access full book title Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at SNN by . Download full books in PDF and EPUB format.

Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at SNN

Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at SNN PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In this paper, we have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au+Au collisions at √sNN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v2 depends both on eccentricity and the number of participants, Npart. We observe that v2 divided by eccentricity (?) monotonically increases with Npart and scales as N1/3part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KET=mT–m between 0.1KEsubT/sub/nsubq/sub1 GeV. Finally, combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of vsub2/sub/(nsubq/sub∙????????Nsup1/3/supsubpart/sub) vs KEsubT/sub/n

Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at SNN

Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at SNN PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In this paper, we have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au+Au collisions at √sNN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v2 depends both on eccentricity and the number of participants, Npart. We observe that v2 divided by eccentricity (?) monotonically increases with Npart and scales as N1/3part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KET=mT–m between 0.1KEsubT/sub/nsubq/sub1 GeV. Finally, combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of vsub2/sub/(nsubq/sub∙????????Nsup1/3/supsubpart/sub) vs KEsubT/sub/n

Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at {u221A}sNN

Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at {u221A}sNN PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
We have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au+Au collisions at √sNN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v2 depends both on eccentricity and the number of participants, Npart. We observe that v2 divided by eccentricity (?) monotonically increases with Npart and scales as N1/3part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KET=mT–m between 0.1KEsubT/sub/nsubq/sub1 GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of vsub2/sub/(nsubq/sub∙????????Nsup1/3/supsubpart/sub) vs KEsubT/sub/n

Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at [math][mrow][msqrt][msub][mi][/mi][mi Mathvariant

Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at [math][mrow][msqrt][msub][mi][/mi][mi Mathvariant PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Azimuthal Anisotropy of Φ Meson in U+U and Au+Au Collisions at RHIC.

Azimuthal Anisotropy of Φ Meson in U+U and Au+Au Collisions at RHIC. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Azimuthal Anisotropy in U+U Collisions at STAR.

Azimuthal Anisotropy in U+U Collisions at STAR. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
The azimuthal anisotropy of particle production is commonly used in high-energy nuclear collisions to study the early evolution of the expanding system. The prolate shape of uranium nuclei makes it possible to study how the geometry of the colliding nuclei affects final state anisotropies. It also provides a unique opportunity to understand how entropy is produced in heavy ion collisions. In this paper, the two- and four- particle cumulant v2 (v2{2} and v2{4}) from U+U collisions at √sNN = 193 GeV and Au+Au collisions at √sNN = 200 GeV for inclusive charged hadrons will be presented. The STAR Zero Degree Calorimeters are used to select very central collisions. Differences were observed between the multiplicity dependence of v2{2} for most central Au+Au and U+U collisions. The multiplicity dependence of v2{2} in central collisions were compared to Monte Carlo Glauber model predictions and it was seen that this model cannot explain the present results. (auth).

Systematic Study of Elliptic Flow in Au+Au Collisions at Sqrt(sNN)

Systematic Study of Elliptic Flow in Au+Au Collisions at Sqrt(sNN) PDF Author: Stanislav Salnikov
Publisher:
ISBN:
Category : Nuclear chemistry
Languages : en
Pages :

Book Description


Systematic Study of Charged-pion and Kaon Femtoscopy in Au+Au Collisions at {u221A}sNN

Systematic Study of Charged-pion and Kaon Femtoscopy in Au+Au Collisions at {u221A}sNN PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √sNN=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.

Identified Particle Production, Azimuthal Anisotropy, and Interferometry Measurements in Au+Au Collisions at Sqrt SNN

Identified Particle Production, Azimuthal Anisotropy, and Interferometry Measurements in Au+Au Collisions at Sqrt SNN PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au+Au collisions below the nominal injection energy at the Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance STAR detector at (square root)s{sub NN} = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density (dN/dy) in rapidity (y), average transverse momentum (p{sub T}), particle ratios, elliptic flow, and HBT radii are consistent with the corresponding results at similar (square root)s{sub NN} from fixed target experiments. Directed flow measurements are presented for both midrapidity and forward rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, p{sub T}, and particle ratios are discussed. These results also demonstrate that the capabilities of the STAR detector, although optimized for (square root)s{sub NN} = 200 GeV, are suitable for the proposed QCD critical point search and exploration of the QCD phase diagram at RHIC.

Measurement of Charmed Meson Azimuthal Anisotropy in Au+Au Collisions at a Center of Mass Energy of 200 GeV Per Nucleon Pair at RHIC

Measurement of Charmed Meson Azimuthal Anisotropy in Au+Au Collisions at a Center of Mass Energy of 200 GeV Per Nucleon Pair at RHIC PDF Author: Michael Richard Lomnitz
Publisher:
ISBN:
Category : Heavy ion collisions
Languages : en
Pages : 189

Book Description


Azimuthal Anisotropy in Au+Au Collisions at (square Root)s{sub NN}

Azimuthal Anisotropy in Au+Au Collisions at (square Root)s{sub NN} PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 23

Book Description
The results from the STAR Collaboration on directed flow (v1), elliptic flow (v2), and the fourth harmonic (v4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at (square root)s{sub NN} = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. For v2, scaling with the number of constituent quarks and parton coalescence is discussed. For v4, scaling with v22 and quark coalescence predictions for higher harmonic flow is discussed. The different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v2, scaling with the number of constituent quarks and parton coalescence are discussed. For v22 and quark coalescence are discussed.