System Identification with Quantized Observations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download System Identification with Quantized Observations PDF full book. Access full book title System Identification with Quantized Observations by Le Yi Wang. Download full books in PDF and EPUB format.

System Identification with Quantized Observations

System Identification with Quantized Observations PDF Author: Le Yi Wang
Publisher: Springer Science & Business Media
ISBN: 0817649565
Category : Science
Languages : en
Pages : 317

Book Description
This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. System Identification with Quantized Observations is an excellent resource for graduate students, systems theorists, control engineers, applied mathematicians, as well as practitioners who use identification algorithms in their work.

System Identification with Quantized Observations

System Identification with Quantized Observations PDF Author: Le Yi Wang
Publisher: Springer Science & Business Media
ISBN: 0817649565
Category : Science
Languages : en
Pages : 317

Book Description
This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. System Identification with Quantized Observations is an excellent resource for graduate students, systems theorists, control engineers, applied mathematicians, as well as practitioners who use identification algorithms in their work.

System Identification Using Regular and Quantized Observations

System Identification Using Regular and Quantized Observations PDF Author: Qi He
Publisher: Springer Science & Business Media
ISBN: 1461462924
Category : Science
Languages : en
Pages : 100

Book Description
​This brief presents characterizations of identification errors under a probabilistic framework when output sensors are binary, quantized, or regular. By considering both space complexity in terms of signal quantization and time complexity with respect to data window sizes, this study provides a new perspective to understand the fundamental relationship between probabilistic errors and resources, which may represent data sizes in computer usage, computational complexity in algorithms, sample sizes in statistical analysis and channel bandwidths in communications.

System Identification with Quantized Observations

System Identification with Quantized Observations PDF Author:
Publisher:
ISBN:
Category : Quantum theory
Languages : en
Pages : 317

Book Description
This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification, the book treats linear and nonlinear systems, as well as time-invariant and time-varying systems. The authors examine independent and dependent noises, stochastic- and deterministic-bounded noises, and also noises with unknown distribution functions. The key methodologies combine empirical measures and information-theoretic approaches to derive identification algorithms, provide convergence and convergence speed, establish efficiency of estimation, and explore input design, threshold selection and adaptation, and complexity analysis. System Identification with Quantized Observations is an excellent resource for graduate students, systems theorists, control engineers, applied mathematicians, as well as practitioners who use identification algorithms in their work. Selected material from the book may be used in graduate-level courses on system identification.

System Identification with Quantized Observations

System Identification with Quantized Observations PDF Author: Le Yi Wang
Publisher:
ISBN:
Category : Quantum theory
Languages : en
Pages : 317

Book Description


System Identification Using Regular and Quantized Observations

System Identification Using Regular and Quantized Observations PDF Author: Springer
Publisher:
ISBN: 9781461462934
Category :
Languages : en
Pages : 108

Book Description


Advances in Systems Science

Advances in Systems Science PDF Author: Jerzy Swiątek
Publisher: Springer Science & Business Media
ISBN: 3319018574
Category : Technology & Engineering
Languages : en
Pages : 796

Book Description
The International Conference on Systems Science 2013 (ICSS 2013) was the 18th event of the series of international scientific conferences for researchers and practitioners in the fields of systems science and systems engineering. The conference took place in Wroclaw, Poland during September 10-12, 2013 and was organized by Wroclaw University of Technology and co-organized by: Committee of Automatics and Robotics of Polish Academy of Sciences, Committee of Computer Science of Polish Academy of Sciences and Polish Section of IEEE. The papers included in the proceedings cover the following topics: Control Theory, Databases and Data Mining, Image and Signal Processing, Machine Learning, Modeling and Simulation, Operational Research, Service Science, Time series and System Identification. The accepted and presented papers highlight new trends and challenges in systems science and systems engineering.

Advances in Neural Networks - ISNN 2017

Advances in Neural Networks - ISNN 2017 PDF Author: Fengyu Cong
Publisher: Springer
ISBN: 3319590723
Category : Computers
Languages : en
Pages : 601

Book Description
This book constitutes the refereed proceedings of the 14th International Symposium on Neural Networks, ISNN 2017, held in Sapporo, Hakodate, and Muroran, Hokkaido, Japan, in June 2017. The 135 revised full papers presented in this two-volume set were carefully reviewed and selected from 259 submissions. The papers cover topics like perception, emotion and development, action and motor control, attractor and associative memory, neurodynamics, complex systems, and chaos.

Errors-in-Variables Methods in System Identification

Errors-in-Variables Methods in System Identification PDF Author: Torsten Söderström
Publisher: Springer
ISBN: 3319750011
Category : Technology & Engineering
Languages : en
Pages : 495

Book Description
This book presents an overview of the different errors-in-variables (EIV) methods that can be used for system identification. Readers will explore the properties of an EIV problem. Such problems play an important role when the purpose is the determination of the physical laws that describe the process, rather than the prediction or control of its future behaviour. EIV problems typically occur when the purpose of the modelling is to get physical insight into a process. Identifiability of the model parameters for EIV problems is a non-trivial issue, and sufficient conditions for identifiability are given. The author covers various modelling aspects which, taken together, can find a solution, including the characterization of noise properties, extension to multivariable systems, and continuous-time models. The book finds solutions that are constituted of methods that are compatible with a set of noisy data, which traditional approaches to solutions, such as (total) least squares, do not find. A number of identification methods for the EIV problem are presented. Each method is accompanied with a detailed analysis based on statistical theory, and the relationship between the different methods is explained. A multitude of methods are covered, including: instrumental variables methods; methods based on bias-compensation; covariance matching methods; and prediction error and maximum-likelihood methods. The book shows how many of the methods can be applied in either the time or the frequency domain and provides special methods adapted to the case of periodic excitation. It concludes with a chapter specifically devoted to practical aspects and user perspectives that will facilitate the transfer of the theoretical material to application in real systems. Errors-in-Variables Methods in System Identification gives readers the possibility of recovering true system dynamics from noisy measurements, while solving over-determined systems of equations, making it suitable for statisticians and mathematicians alike. The book also acts as a reference for researchers and computer engineers because of its detailed exploration of EIV problems.

Criteria for System Identification with Quantized Data and the Optimal Quantization Schemes

Criteria for System Identification with Quantized Data and the Optimal Quantization Schemes PDF Author: Koji Tsumura
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Book Description


System Identification

System Identification PDF Author: Karel J. Keesman
Publisher: Springer Science & Business Media
ISBN: 0857295225
Category : Technology & Engineering
Languages : en
Pages : 334

Book Description
System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.