Synthesis, Characterization, and Applications of CVD Micro- and Nanocrystalline Diamond Thin Films PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Synthesis, Characterization, and Applications of CVD Micro- and Nanocrystalline Diamond Thin Films PDF full book. Access full book title Synthesis, Characterization, and Applications of CVD Micro- and Nanocrystalline Diamond Thin Films by Zhenqing Xu. Download full books in PDF and EPUB format.

Synthesis, Characterization, and Applications of CVD Micro- and Nanocrystalline Diamond Thin Films

Synthesis, Characterization, and Applications of CVD Micro- and Nanocrystalline Diamond Thin Films PDF Author: Zhenqing Xu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
ABSTRACT: In this thesis, a systematic study has been carried out on the synthesis, characterization and applications of microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) thin films deposited by the chemical vapor deposition (CVD) method. Firstly, an overview of diamond films synthesized from carbon-containing gas plasmas is presented. A parameter study was performed to grow diamond thin films. The transition from micro- to nanocrystallinity of diamond grains was achieved by controlling the Ar/Hydrogen gas ratio. The nanocrystallinity is the result of a new growth mechanism which involves the insertion of carbon dimmer into carbon-carbon and carbon-hydrogen bonds. Secondly, characterization of diamond films has been carried out by different techniques including electron microscopy, near edge X-ray absorption fine structure (NEXAFS), nanoindentation, and Raman spectroscopy. Unique properties of NCD, compared to those of MCD grown by conventional hydrogen rich plasma, have been observed and investigated. Thirdly, various applications of diamond films are discussed: a). Well-adhered MCD coatings have been deposited on WC-Co substrates with proper surface pretreatment. A diffusion barrier Cr/CrN/Cr was deposited on the cemented carbide substrate and the substrate was short peened with 150 micron friable diamond powders to achieve higher nucleation density and stronger adhesion strength; b). A nitrogen doped NCD based biosensor was fabricated for glucose sensing. Carboxyl functional group and conducting polymer (polyaniline) have been utilized respectively to electrochemically functionalize the diamond surface. A linear response to glucose concentration has been obtained from the electrode with good sensitivity and stability; c). A novel approach to synthesize NCD wires has been developed for the first time. The NCD coating was successfully coated on Si nanowires (SiNWs) to form NCD wire with diameter around a few microns. This study opens a whole new area for applications based on diamond wires such as neural transmission electrodes, field emission emitters, and electrochemical electrodes with improved properties.

Synthesis, Characterization, and Applications of CVD Micro- and Nanocrystalline Diamond Thin Films

Synthesis, Characterization, and Applications of CVD Micro- and Nanocrystalline Diamond Thin Films PDF Author: Zhenqing Xu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
ABSTRACT: In this thesis, a systematic study has been carried out on the synthesis, characterization and applications of microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) thin films deposited by the chemical vapor deposition (CVD) method. Firstly, an overview of diamond films synthesized from carbon-containing gas plasmas is presented. A parameter study was performed to grow diamond thin films. The transition from micro- to nanocrystallinity of diamond grains was achieved by controlling the Ar/Hydrogen gas ratio. The nanocrystallinity is the result of a new growth mechanism which involves the insertion of carbon dimmer into carbon-carbon and carbon-hydrogen bonds. Secondly, characterization of diamond films has been carried out by different techniques including electron microscopy, near edge X-ray absorption fine structure (NEXAFS), nanoindentation, and Raman spectroscopy. Unique properties of NCD, compared to those of MCD grown by conventional hydrogen rich plasma, have been observed and investigated. Thirdly, various applications of diamond films are discussed: a). Well-adhered MCD coatings have been deposited on WC-Co substrates with proper surface pretreatment. A diffusion barrier Cr/CrN/Cr was deposited on the cemented carbide substrate and the substrate was short peened with 150 micron friable diamond powders to achieve higher nucleation density and stronger adhesion strength; b). A nitrogen doped NCD based biosensor was fabricated for glucose sensing. Carboxyl functional group and conducting polymer (polyaniline) have been utilized respectively to electrochemically functionalize the diamond surface. A linear response to glucose concentration has been obtained from the electrode with good sensitivity and stability; c). A novel approach to synthesize NCD wires has been developed for the first time. The NCD coating was successfully coated on Si nanowires (SiNWs) to form NCD wire with diameter around a few microns. This study opens a whole new area for applications based on diamond wires such as neural transmission electrodes, field emission emitters, and electrochemical electrodes with improved properties.

Diamond Based-Materials

Diamond Based-Materials PDF Author: Qiang Hu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The studies covered in this dissertation concentrate on the various forms of diamond films synthesized by chemical vapor deposition (CVD) method, including microwave CVD and hot filament CVD. According to crystallinity and grain size, a variety of diamond forms primarily including microcrystalline (most commonly referred to as polycrystalline) and nanocrystalline diamond films, diamond-like carbon (DLC) films were successfully synthesized. The as-grown diamond films were optimized by changing deposition pressure, volume of reactant gas hydrogen (H2) and carrier gas argon (Ar) in order to get high-quality diamond films with a smooth surface, low roughness, preferred growth orientation and high sp3 bond contents, etc. The characterization of diamond films was carried out by metrological and analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and Raman spectroscopy. The results of characterization served as feedback to optimize experimental parameters, so as to improve the quality of diamond films. A good understanding of the diamond film properties such as mechanical, electrical, optical and biological properties, which are determined by the qualities of diamond films, is necessary for the selection of diamond films for different applications. The nanocrystalline diamond nanowires grown by a combination of vapor-liquid-solid (VLS) method and CVD method in two stages, and the graphene grown on silicon substrate with nickel catalytic thin film by single CVD method were also investigated in a touch-on level.

Ultrananocrystalline Diamond

Ultrananocrystalline Diamond PDF Author: Olga A. Shenderova
Publisher: William Andrew
ISBN: 1437734650
Category : Science
Languages : en
Pages : 582

Book Description
Ultrananocrystalline Diamond: Synthesis, Properties, and Applications is a unique practical reference handbook. Written by the leading experts worldwide it introduces the science of UNCD for both the R&D community and applications developers using UNCD in a diverse range of applications from macro to nanodevices, such as energy-saving ultra-low friction and wear coatings for mechanical pump seals and tools, high-performance MEMS/NEMS-based systems (e.g. in telecommunications), the next generation of high-definition flat panel displays, in-vivo biomedical implants, and biosensors. This work brings together the basic science of nanoscale diamond structures, with detailed information on ultra-nanodiamond synthesis, properties, and applications. The book offers discussion on UNCD in its two forms, as a powder and as a chemical vapor deposited film. Also discussed are the superior mechanical, tribological, transport, electrochemical, and electron emission properties of UNCD for a wide range of applications including MEMS/ NEMS, surface acoustic wave (SAW) devices, electrochemical sensors, coatings for field emission arrays, photonic and RF switching, biosensors, and neural prostheses, etc. Ultrananocrystalline Diamond summarises the most recent developments in the nanodiamond field, and presents them in a way that will be useful to the R&D community in both academic and corporate sectors. Coverage of both nanodiamond particles and films make this a valuable resource for both the nanotechnology community and the field of thin films / vacuum deposition. Written by the world's leading experts in nanodiamond, this second edition builds on its predecessor's reputation as the most up-to-date resource in the field.

Synthesis and Characterization of Diamond Thin Films by Microwave Plasma-enhanced Chemical Vapor Deposition (MPECVD)

Synthesis and Characterization of Diamond Thin Films by Microwave Plasma-enhanced Chemical Vapor Deposition (MPECVD) PDF Author: Shih-Feng Chou
Publisher:
ISBN:
Category :
Languages : en
Pages : 174

Book Description
Diamond thin films are deposited on silicon wafers by MPECVD process with the presence of methane, argon, and hydrogen gases. The reaction chamber is designed with an internal microwave reaction cavity and a high-pressure pocket for improving deposition conditions. Scanning electron microscopy reveals tetrahedral and cauliflower-shaped crystals for polycrystalline diamond and nanocrystalline diamond films, respectively. Spectroscopy ellipsometer studies indicate that diamond-like carbon (DLC) films are deposited with a thickness of 700 nm. Fourier transform infrared spectroscopy shows C-H stretching in the range from 2800 cm -1 to 3000 cm -1 . Nanoindentation is performed on DLC films with an average hardness of 10.98 GPa and an average elastic modulus of 90.32 GPa. The effects of chamber pressure, microwave forward power, and gas mixture on the plasma chemistry are discussed. Substrate temperature has a significant influence on film growth rate, and substrate pretreatment can enhance the quality of diamond films.

Synthesis, Properties and Applications of Ultrananocrystalline Diamond

Synthesis, Properties and Applications of Ultrananocrystalline Diamond PDF Author: Dieter M. Gruen
Publisher: Springer Science & Business Media
ISBN: 1402033222
Category : Science
Languages : en
Pages : 410

Book Description
We are pleased to present the Proceedings of the NATO Advanced Research Workshop “Syntheses, Properties and Applications of Ultrananocrystalline Diamond” which was held June 7-10, 2004 in St. Petersburg, Russia. The main goal of the Workshop was to provide a forum for the intensive exchange of opinions between scientists from Russia and NATO countries in order to give additional impetus to the development of the science and applications of a new carbon nanostructure, called ultrananocrystalline diamond (UNCD) composed of 2-5 nm crystallites. There are two forms of UNCD, dispersed particles and films. The two communities of researchers working on these two forms of UNCD have hitherto lacked a common forum in which to explore areas of scientific and technological overlap. As a consequence, the two fields have up to now developed independently of each other. The time had clearly come to remedy this situation in order to be able to take full advantage of the enormous potential for societal benefits to be derived from exploiting the synergistic relationships between UNCD dispersed particulates and UNCD films. The NATO sponsored ARW therefore occurred in a very timely manner and was successful in beginning the desired dialogue, a precondition for making progress toward the above stated goal. The discovery of UNCD completes a triadof nanostructured carbonswhich includes fullerenes and nanotubes.

Microstructural, Mechanical and Antibacterial Characterization of Nanocrystalline Diamond Thin Films

Microstructural, Mechanical and Antibacterial Characterization of Nanocrystalline Diamond Thin Films PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Nanocrystalline diamond thin films exhibit unusual hardness, wear resistance, and corrosion resistance properties, and are currently being considered for use in orthopaedic, ophthalmic, and other medical implants. The purpose of this study was to evaluate the hardness, Young's modulus, microscratch adhesion, and antimicrobial properties of nanocrystalline diamond thin films. Microwave plasma enhanced chemical vapor deposition (MPCVD) was used to deposit nanocrystalline diamond thin films on p-type silicon wafers. Raman spectroscopy, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) were used to determine quality and phase purity of the nanocrystalline diamond thin films. The thin films consisted of diamond nodules that varied in morphology (size=60-600 nm). HRTEM showed that the films contained rectangular crystallites with dimensions between 2 -- 4 nm. Raman spectroscopy confirmed that the thin film sample contained both tetrahedrally-bonded and amorphous carbon phases. The hardness and Young's modulus values for the nanocrystalline diamond thin films were 29.4 " 11.9 GPa to 72.0 " 10.7 GPa and 346.4 " 98 GPa to 551.8 " 71.5 GPa, respectively. Microscratch adhesion testing was performed on the nanocrystalline diamond films to examine the functional adhesion strength between the diamond films and the silicon substrates. The nanocrystalline diamond/silicon wafer systems demonstrated very good film adhesion (LCN H"3.1 -- 3.4 N). A CDC biofilm reactor was utilized to incubate and grow Pseudomonas fluorescens on the surfaces of the nanocrystalline diamond thin films and stainless steel coupons. Quantitative data showed that bacterial attachment on the nanocrystalline diamond thin films was quite significant and comparable to that on stainless steel surfaces. This work suggests that nanocrystalline diamond thin films are good candidate materials for biomedical implants but are susceptible.

Synthesis of Thin and Thick Ultra-nanocrystalline Diamond Films by Microwave Plasma CVD Systems

Synthesis of Thin and Thick Ultra-nanocrystalline Diamond Films by Microwave Plasma CVD Systems PDF Author: Dzung Tri Tran
Publisher:
ISBN:
Category : Chemical vapor deposition
Languages : en
Pages : 314

Book Description


Growth and Characterization of Nanocrystalline Diamond Films for Microelectronics and Microelectromechanical Systems

Growth and Characterization of Nanocrystalline Diamond Films for Microelectronics and Microelectromechanical Systems PDF Author: Sathyaharish Jeedigunta
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
ABSTRACT: Diamond is widely known for its extraordinary properties, such as high thermal conductivity, energy bandgap and high material hardness and durability making it a very attractive material for microelectronic and mechanical applications. Synthetic diamonds produced by chemical vapor deposition (CVD) methods retain most of the properties of natural diamond. Within this class of material, nanocrystalline diamond (NCD) is being developed for microelectronic and microelectromechanical systems (MEMS) applications. During this research, intrinsic and doped NCD films were grown by the microwave plasma enhanced chemical vapor deposition (MPECVD) method using CH4/Ar/H2 gas mixture and CH4/Ar/N2 gas chemistries respectively. The first part of research focused on the growth and characterization of NCD films while the second part on the application of NCD as a structural material in MEMS device fabrication.

Microstructural, Mechanical and Antibacterial Characterization of Nanocrystalline Diamond Thin Films

Microstructural, Mechanical and Antibacterial Characterization of Nanocrystalline Diamond Thin Films PDF Author: Jamal Sana Lewis
Publisher:
ISBN:
Category :
Languages : en
Pages : 69

Book Description
Keywords: biomedical coatings, antibacterial, nanocrystalline diamond, mechanical properties.

Diamond Thin Films - An Emerging Technology: Past, Present and Future

Diamond Thin Films - An Emerging Technology: Past, Present and Future PDF Author: Ashok Kumar Dua
Publisher: Trans Tech Publications Ltd
ISBN: 3035706352
Category : Technology & Engineering
Languages : en
Pages : 110

Book Description
Diamond, as well as being a precious gem, is a versatile material par excellence. No other material comes anywhere near to matching its properties, which are both extreme, and also expressed in rare combinations. However, natural diamonds, and those synthesised under high sandpressure temperatures, are too expensive or small for many technological applications. These limitations can be overcome by using large-area diamond coatings; chemically bonded to inexpensive non-diamond surfaces. The consequent economic advantages provide the driving force for much diamond-related research and technology.