Synthesis and Characterization of Poly (L-lactide)-poly (D, L-lactide) Stereo-block Copolymers PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Synthesis and Characterization of Poly (L-lactide)-poly (D, L-lactide) Stereo-block Copolymers PDF full book. Access full book title Synthesis and Characterization of Poly (L-lactide)-poly (D, L-lactide) Stereo-block Copolymers by Sachit Chopra. Download full books in PDF and EPUB format.

Synthesis and Characterization of Poly (L-lactide)-poly (D, L-lactide) Stereo-block Copolymers

Synthesis and Characterization of Poly (L-lactide)-poly (D, L-lactide) Stereo-block Copolymers PDF Author: Sachit Chopra
Publisher:
ISBN:
Category : Biodegradable plastics
Languages : en
Pages : 102

Book Description


Synthesis and Characterization of Poly (L-lactide)-poly (D, L-lactide) Stereo-block Copolymers

Synthesis and Characterization of Poly (L-lactide)-poly (D, L-lactide) Stereo-block Copolymers PDF Author: Sachit Chopra
Publisher:
ISBN:
Category : Biodegradable plastics
Languages : en
Pages : 102

Book Description


Handbook of Telechelic Polyesters, Polycarbonates, and Polyethers

Handbook of Telechelic Polyesters, Polycarbonates, and Polyethers PDF Author: Sophie M. Guillaume
Publisher: CRC Press
ISBN: 1315340798
Category : Science
Languages : en
Pages : 310

Book Description
Telechelic polymers have garnered a great deal of scientific interest due to their reactive chain-end functions. This comprehensive book compiles and details the basic principles of and cutting-edge research in telechelic polyesters, polycarbonates, and polyethers, ranging from synthesis to applications. It discusses general strategies toward telechelic polymers, centered on the fundamental aspects of polycondensation reactions, of cationic, anionic, coordination-insertion, and activated monomer mechanisms of the metal-, enzyme-, or otherwise organocatalyzed ring-opening polymerization of cyclic monomers, and of postpolymerization chemical modification methods of polymer precursors. All main classes of polymers are covered separately, comprising polyhydroxyalkanoates, poly(ε-caprolactone)s, poly(lactic acid)s, polylactides, polycarobnates, and polyethers, including synthetic approaches as well as some illustrative, up-to-date examples and uses. The book also addresses applications of hydroxyl, thiol, amino, or acrylate/methacrylate end-capped polymers as starting materials for the preparation of diverse polymer architectures ranging from block, graft, and star-shaped polymers and micelles to precursors for ATRP macroinitiators, polyurethane copolymers, shape-memory polymers, or nanosized drug delivery systems. The book will appeal to advanced undergraduate- and graduate-level students of polymer science; researchers in macromolecular science, especially those with an interest in functional and reactive polymers; and polymer chemists in academia and industry.

Poly(lactic acid)

Poly(lactic acid) PDF Author: Rafael A. Auras
Publisher: John Wiley & Sons
ISBN: 1119767466
Category : Technology & Engineering
Languages : en
Pages : 692

Book Description
POLY(LACTIC ACID) The second edition of a key reference, fully updated to reflect new research and applications Poly(lactic acid)s – PLAs, biodegradable polymers derived from lactic acid, have become vital components of a sustainable society. Eco-friendly PLA polymers are used in numerous industrial applications ranging from packaging to medical implants and to wastewater treatment. The global PLA market is predicted to expand significantly over the next decade due to increasing demand for compostable and recyclable materials produced from renewable resources. Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life provides comprehensive coverage of the basic chemistry, production, and industrial use of PLA. Contributions from an international panel of experts review specific processing methods, characterization techniques, and various applications in medicine, textiles, packaging, and environmental engineering. Now in its second edition, this fully up-to-date volume features new and revised chapters on 3D printing, the mechanical and chemical recycling of PLA, PLA stereocomplex crystals, PLA composites, the environmental footprint of PLA, and more. Highlights the biodegradability, recycling, and sustainability benefits of PLA Describes processing and conversion technologies for PLA, such as injection molding, extrusion, blending, and thermoforming Covers various aspects of lactic acid/lactide monomers, including physicochemical properties and production Examines different condensation reactions and modification strategies for enhanced polymerization of PLA Discusses the thermal, rheological, and mechanical properties of PLA Addresses degradation and environmental issues of PLA, including photodegradation, radiolysis, hydrolytic degradation, biodegradation, and life cycle assessment Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life, Second Edition remains essential reading for polymer engineers, materials scientists, polymer chemists, chemical engineers, industry professionals using PLA, and scientists and advanced student engineers interested in biodegradable plastics.

Macromolecular Engineering

Macromolecular Engineering PDF Author: Alex Lubnin
Publisher: Elsevier
ISBN: 0128232579
Category : Science
Languages : en
Pages : 310

Book Description
Macromolecular Engineering: Design, Synthesis and Application of Polymers explores the role of macromolecular engineering in the development of polymer systems with engineered structures that offer the desired combination of properties for advanced applications. This book is organized into sections covering theory and principles, science and technology, architectures and technologies, and applications, with an emphasis on the latest advances in techniques, materials, properties, and end uses – and including recently commercialized, or soon to be commercialized, designed polymer systems. The chapters are contributed by a group of leading figures who are actively researching in the field. This is an invaluable resource for researchers and scientists interested in polymer synthesis and design, across the fields of polymer chemistry, polymer science, plastics engineering, and materials science and engineering. In industry, this book supports engineers, R&D, and scientists working on polymer design for application areas such as biomedical and healthcare, automotive and aerospace, construction and consumer goods. - Presents the theory, principles, architectures, technologies, and latest advances in macromolecular engineering for polymer design and synthesis - Explains polymer design for cutting-edge applications areas, including coatings, automotive, industrial, household and medical uses - Approaches several novel materials, such as polyisobutylene (PIB), polyamide-based polyurethanes, and aliphatic polyesters

Bio-Based Plastics

Bio-Based Plastics PDF Author: Stephan Kabasci
Publisher: John Wiley & Sons
ISBN: 1118676734
Category : Technology & Engineering
Languages : en
Pages : 396

Book Description
The field of bio-based plastics has developed significantly in the last 10 years and there is increasing pressure on industries to shift existing materials production from petrochemicals to renewables. Bio-based Plastics presents an up-to-date overview of the basic and applied aspects of bioplastics, focusing primarily on thermoplastic polymers for material use. Emphasizing materials currently in use or with significant potential for future applications, this book looks at the most important biopolymer classes such as polysaccharides, lignin, proteins and polyhydroxyalkanoates as raw materials for bio-based plastics, as well as materials derived from bio-based monomers like lipids, poly(lactic acid), polyesters, polyamides and polyolefines. Detailed consideration is also given to the market and availability of renewable raw materials, the importance of bio-based content and the aspect of biodegradability. Topics covered include: Starch Cellulose and cellulose acetate Materials based on chitin and chitosan Lignin matrix composites from natural resources Polyhydroxyalkanoates Poly(lactic acid) Polyesters, Polyamides and Polyolefins from biomass derived monomers Protein-based plastics Bio-based Plastics is a valuable resource for academic and industrial researchers who are interested in new materials, renewable resources, sustainability and polymerization technology. It will also prove useful for advanced students interested in the development of bio-based products and materials, green and sustainable chemistry, polymer chemistry and materials science. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs

Poly(lactic acid) Science and Technology

Poly(lactic acid) Science and Technology PDF Author: Alfonso Jiménez
Publisher: Royal Society of Chemistry
ISBN: 1849738793
Category : Science
Languages : en
Pages : 374

Book Description
A comprehensive overview of the synthesis, characterisation, properties and applications of poly(lactic acid) science and technology covering scientific, ecological, social and economic issues.

Handbook Of Green Materials: Processing Technologies, Properties And Applications (In 4 Volumes)

Handbook Of Green Materials: Processing Technologies, Properties And Applications (In 4 Volumes) PDF Author: Kristiina Oksman
Publisher: World Scientific
ISBN: 9814566470
Category : Science
Languages : en
Pages : 1124

Book Description
Green materials and green nanotechnology have gained widespread interest over the last 15 years; first in academia, then in related industries in the last few years.The Handbook of Green Materials serves as reference literature for undergraduates and graduates studying materials science and engineering, composite materials, chemical engineering, bioengineering and materials physics; and for researchers, professional engineers and consultants from polymer or forest industries who encounter biobased nanomaterials, bionanocomposites, self- and direct-assembled nanostructures and green composite materials in their lines of work.This four-volume set contains material ranging from basic, background information on the fields discussed, to reports on the latest research and industrial activities, and finally the works by contributing authors who are prominent experts of the subjects they address in this set.The four volumes comprise of:The first volume explains the structure of cellulose; different sources of raw material; the isolation/separation processes of nanomaterials from different material sources; and properties and characteristics of cellulose nanofibers and nanocrystals (starch nanomaterials). Information on the different characterization methods and the most important properties of biobased nanomaterials are also covered. The industrial point of view regarding both the processability and access of these nanomaterials, as well as large scale manufacturing and their industrial application is discussed — particularly in relation to the case of the paper industry.The second volume expounds on different bionanocomposites based on cellulose nanofibers or nanocrystals and their preparation/manufacturing processes. It also provides information on different characterization methods and the most important properties of bionanocomposites, as well as techniques of modeling the mechanical properties of nanocomposites. This volume presents the industrial point of view regarding large scale manufacturing and their applications from the perspective of their medical uses in printed electronics and in adhesives.The third volume deals with the ability of bionanomaterials to self-assemble in either liquids or forming organized solid materials. The chemistry of cellulose nanomaterials and chemical modifications as well as different assembling techniques and used characterization methods, and the most important properties which can be achieved by self-assembly, are described. The chapters, for example, discuss subjects such as ultra-light biobased aerogels based on cellulose and chitin, thin films suitable as barrier layers, self-sensing nanomaterials, and membranes for water purification.The fourth volume reviews green composite materials — including green raw materials — such as biobased carbon fibers, regenerated cellulose fibers and thermoplastic and thermoset polymers (e.g. PLA, bio-based polyolefines, polysaccharide polymers, natural rubber, bio-based polyurethane, lignin polymer, and furfurylalchohol). The most important composite processing technologies are described, including: prepregs of green composites, compounding, liquid composite molding, foaming, and compression molding. Industrial applications, especially for green transportation and the electronics industry, are also described.This four-volume set is a must-have for anyone keen to acquire knowledge on novel bionanomaterials — including structure-property correlations, isolation and purification processes of nanofibers and nanocrystals, their important characteristics, processing technologies, industrial up-scaling and suitable industry applications. The handbook is a useful reference not only for teaching activities but also for researchers who are working in this field.

NanoBioEngineering

NanoBioEngineering PDF Author: Bhupinder Singh
Publisher: CRC Press
ISBN: 1351138898
Category : Science
Languages : en
Pages : 317

Book Description
The objective of this book is to provide the fundamental comprehension of a broad range of topics in an integrated volume such that readership hailing from diverse disciplines can rapidly acquire the necessary background for applying it in pertinent research and development field.

Multiple Emulsions

Multiple Emulsions PDF Author: Jean Louis Grossiord
Publisher: Santé
ISBN: 9782864111191
Category :
Languages : en
Pages : 443

Book Description


The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application

The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application PDF Author: Shunsheng Cao
Publisher: Bentham Science Publishers
ISBN: 160805876X
Category : Medical
Languages : en
Pages : 355

Book Description
Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1 highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues. This eBook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies for the development of materials with long-lasting scaffold and biocompatibility functions. The contents of this eBook include chapters on cell-scaffold interactions in three dimensions, nanocrystalline diamond films for biomedical applications, bioceramics-design, synthesis and biological applications, polyester biomaterials for regenerative medicine, nanomaterials for skin regeneration and many more. This book is a valuable resource for MSc and PhD students , academic personnel and researchers seeking updated and critically important information on biomaterials and biomedical applications.