Author: Jiujun Zhang
Publisher: Springer Science & Business Media
ISBN: 1848009364
Category : Technology & Engineering
Languages : en
Pages : 1147
Book Description
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.
PEM Fuel Cell Electrocatalysts and Catalyst Layers
Author: Jiujun Zhang
Publisher: Springer Science & Business Media
ISBN: 1848009364
Category : Technology & Engineering
Languages : en
Pages : 1147
Book Description
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.
Publisher: Springer Science & Business Media
ISBN: 1848009364
Category : Technology & Engineering
Languages : en
Pages : 1147
Book Description
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.
Micro & Nano-Engineering of Fuel Cells
Author: Dennis Y.C. Leung
Publisher: CRC Press
ISBN: 1315815079
Category : Science
Languages : en
Pages : 337
Book Description
Fuel cells are clean and efficient energy conversion devices expected to be the next generation power source. During more than 17 decades of research and development, various types of fuel cells have been developed with a view to meet the different energy demands and application requirements. Scientists have devoted a great deal of time and effort
Publisher: CRC Press
ISBN: 1315815079
Category : Science
Languages : en
Pages : 337
Book Description
Fuel cells are clean and efficient energy conversion devices expected to be the next generation power source. During more than 17 decades of research and development, various types of fuel cells have been developed with a view to meet the different energy demands and application requirements. Scientists have devoted a great deal of time and effort
Nanomaterials for Direct Alcohol Fuel Cells
Author: Fatih Şen
Publisher: Elsevier
ISBN: 0128217146
Category : Technology & Engineering
Languages : en
Pages : 556
Book Description
Nanomaterials for Direct Alcohol Fuel Cells explains nanomaterials and nanocomposites as well as the characterization, manufacturing, and design of alcohol fuel cell applications. The advantages of direct alcohol fuel cells (DAFCs) are significant for reliable and long-lasting portable power sources used in devices such as mobile phones and computers. Even though substantial improvements have been made in DAFC systems over the last decade, more effort is needed to commercialize DAFCs by producing durable, low-cost, and smaller-sized devices. Nanomaterials have an important role to play in achieving this aim. The use of nanotechnology in DAFCs is vital due to their role in the synthesis of nanocatalysts within the manufacturing process. Lately, nanocatalysts containing carbon such as graphene, carbon nanotubes, and carbon nanocoils have also attracted much attention. When compared to traditional materials, carbon-based materials have unique advantages, such as high corrosion resistance, better electrical conductivity, and less catalyst poisoning. This book also covers different aspects of nanocomposites fabrication, including their preparation, design, and characterization techniques for their fuel cell applications. This book is an important reference source for materials scientists, engineers, energy scientists, and electrochemists who are seeking to improve their understanding of how nanomaterials are being used to enhance the efficiency and lower the cost of DAFCs. - Shows how nanomaterials are being used for the design and manufacture of DAFCs - Explores how nanotechnology is being used to enhance the synthesis and catalysis processes to create the next generation of fuel cells - Assesses the major challenges of producing nanomaterial-based DAFCs on an industrial scale
Publisher: Elsevier
ISBN: 0128217146
Category : Technology & Engineering
Languages : en
Pages : 556
Book Description
Nanomaterials for Direct Alcohol Fuel Cells explains nanomaterials and nanocomposites as well as the characterization, manufacturing, and design of alcohol fuel cell applications. The advantages of direct alcohol fuel cells (DAFCs) are significant for reliable and long-lasting portable power sources used in devices such as mobile phones and computers. Even though substantial improvements have been made in DAFC systems over the last decade, more effort is needed to commercialize DAFCs by producing durable, low-cost, and smaller-sized devices. Nanomaterials have an important role to play in achieving this aim. The use of nanotechnology in DAFCs is vital due to their role in the synthesis of nanocatalysts within the manufacturing process. Lately, nanocatalysts containing carbon such as graphene, carbon nanotubes, and carbon nanocoils have also attracted much attention. When compared to traditional materials, carbon-based materials have unique advantages, such as high corrosion resistance, better electrical conductivity, and less catalyst poisoning. This book also covers different aspects of nanocomposites fabrication, including their preparation, design, and characterization techniques for their fuel cell applications. This book is an important reference source for materials scientists, engineers, energy scientists, and electrochemists who are seeking to improve their understanding of how nanomaterials are being used to enhance the efficiency and lower the cost of DAFCs. - Shows how nanomaterials are being used for the design and manufacture of DAFCs - Explores how nanotechnology is being used to enhance the synthesis and catalysis processes to create the next generation of fuel cells - Assesses the major challenges of producing nanomaterial-based DAFCs on an industrial scale
Nanocatalysts
Author: Indrajit Sinha
Publisher: BoD – Books on Demand
ISBN: 1789841593
Category : Science
Languages : en
Pages : 170
Book Description
Nanocatalysis is a topical area of research that has huge potential. It attempts to merge the advantages of heterogeneous and homogeneous catalysis. The collection of articles in this book treats the topics of specificity, activity, reusability, and stability of the catalyst and presents a compilation of articles that focuses on different aspects of these issues.
Publisher: BoD – Books on Demand
ISBN: 1789841593
Category : Science
Languages : en
Pages : 170
Book Description
Nanocatalysis is a topical area of research that has huge potential. It attempts to merge the advantages of heterogeneous and homogeneous catalysis. The collection of articles in this book treats the topics of specificity, activity, reusability, and stability of the catalyst and presents a compilation of articles that focuses on different aspects of these issues.
PEM Electrolysis for Hydrogen Production
Author: Dmitri Bessarabov
Publisher: CRC Press
ISBN: 1482252325
Category : Science
Languages : en
Pages : 401
Book Description
An ever-increasing dependence on green energy has brought on a renewed interest in polymer electrolyte membrane (PEM) electrolysis as a viable solution for hydrogen production. While alkaline water electrolyzers have been used in the production of hydrogen for many years, there are certain advantages associated with PEM electrolysis and its relevan
Publisher: CRC Press
ISBN: 1482252325
Category : Science
Languages : en
Pages : 401
Book Description
An ever-increasing dependence on green energy has brought on a renewed interest in polymer electrolyte membrane (PEM) electrolysis as a viable solution for hydrogen production. While alkaline water electrolyzers have been used in the production of hydrogen for many years, there are certain advantages associated with PEM electrolysis and its relevan
Advanced Electrocatalysts for Low-Temperature Fuel Cells
Author: Francisco Javier Rodríguez-Varela
Publisher: Springer
ISBN: 3319990195
Category : Science
Languages : en
Pages : 318
Book Description
This book introduces the reader to the state of the art in nanostructured anode and cathode electrocatalysts for low-temperature acid and alkaline fuel cells. It explores the electrocatalysis of anode (oxidation of organic molecules) and cathode (oxygen reduction) reactions. It also offers insights into metal-carbon interactions, correlating them with the catalytic activity of the electrochemical reactions. The book explores the electrocatalytic behaviour of materials based on noble metals and their alloys, as well as metal-metal oxides and metal-free nanostructures. It also discusses the surface and structural modification of carbon supports to enhance the catalytic activity of electrocatalysts for fuel-cell reactions.
Publisher: Springer
ISBN: 3319990195
Category : Science
Languages : en
Pages : 318
Book Description
This book introduces the reader to the state of the art in nanostructured anode and cathode electrocatalysts for low-temperature acid and alkaline fuel cells. It explores the electrocatalysis of anode (oxidation of organic molecules) and cathode (oxygen reduction) reactions. It also offers insights into metal-carbon interactions, correlating them with the catalytic activity of the electrochemical reactions. The book explores the electrocatalytic behaviour of materials based on noble metals and their alloys, as well as metal-metal oxides and metal-free nanostructures. It also discusses the surface and structural modification of carbon supports to enhance the catalytic activity of electrocatalysts for fuel-cell reactions.
Direct Alcohol Fuel Cells
Author: Horacio R. Corti
Publisher: Springer Science & Business Media
ISBN: 9400777086
Category : Science
Languages : en
Pages : 377
Book Description
Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications begins with an introductory overview of direct alcohol fuel cells (DAFC); it focuses on the main goals and challenges in the areas of materials development, performance, and commercialization. The preparation and the properties of the anodic catalysts used for the oxidation of methanol, higher alcohols, and alcohol tolerant cathodes are then described. The membranes used as proton conductors in DAFC are examined, as well as alkaline membranes, focusing on the electrical conductivity and alcohol permeability. The use of different kinds of carbon materials as catalyst supports, gas diffusion layers, and current collectors in DAFC is also discussed. State of the art of the modeling is used to estimate performance and durability. The closing chapter reviews the use of DAFC in portable equipment and mobile devices and features a detailed discussion on the mechanisms of component degradation which limits their durability. This book is written to facilitate the understanding of DAFC technology, applications, and future challenges. It is an excellent introduction for electrochemical and material engineers interested in small fuel cells as portable energy sources, scientists focused on materials science for energy production and storage, as well as policy-makers in the area of renewable energies.
Publisher: Springer Science & Business Media
ISBN: 9400777086
Category : Science
Languages : en
Pages : 377
Book Description
Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications begins with an introductory overview of direct alcohol fuel cells (DAFC); it focuses on the main goals and challenges in the areas of materials development, performance, and commercialization. The preparation and the properties of the anodic catalysts used for the oxidation of methanol, higher alcohols, and alcohol tolerant cathodes are then described. The membranes used as proton conductors in DAFC are examined, as well as alkaline membranes, focusing on the electrical conductivity and alcohol permeability. The use of different kinds of carbon materials as catalyst supports, gas diffusion layers, and current collectors in DAFC is also discussed. State of the art of the modeling is used to estimate performance and durability. The closing chapter reviews the use of DAFC in portable equipment and mobile devices and features a detailed discussion on the mechanisms of component degradation which limits their durability. This book is written to facilitate the understanding of DAFC technology, applications, and future challenges. It is an excellent introduction for electrochemical and material engineers interested in small fuel cells as portable energy sources, scientists focused on materials science for energy production and storage, as well as policy-makers in the area of renewable energies.
Direct Alcohol Fuel Cells for Portable Applications
Author: Alexandra M. F. R. Pinto
Publisher: Academic Press
ISBN: 0128118989
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
Direct Alcohol Fuel Cells for Portable Applications: Fundamentals, Engineering and Advances presents the fundamental concepts, technological advances and challenges in developing, modeling and deploying fuel cells and fuel cell systems for portable devices, including micro and mini fuel cells. The authors review the fundamental science of direct alcohol fuel cells, covering, in detail, thermodynamics, electrode kinetics and electrocatalysis of charge-transfer reactions, mass and heat transfer phenomena, and basic modeling aspects. In addition, the book examines other fuels in DAFCs, such as formic acid, ethylene glycol and glycerol, along with technological aspects and applications, including case studies and cost analysis. Researchers, engineering professionals, fuel cell developers, policymakers and senior graduate students will find this a valuable resource. The book's comprehensive coverage of fundamentals is especially useful for graduate students, advanced undergraduate students and those new to the field. - Provides a comprehensive understanding of the fundamentals of DAFCs and their basic components, design and performance - Presents current and complete information on the state-of-the-art of DAFC technology and its most relevant challenges for commercial deployment - Includes practical application examples, problems and case studies - Covers the use of other fuels, such as formic acid, ethylene glycol and glycerol
Publisher: Academic Press
ISBN: 0128118989
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
Direct Alcohol Fuel Cells for Portable Applications: Fundamentals, Engineering and Advances presents the fundamental concepts, technological advances and challenges in developing, modeling and deploying fuel cells and fuel cell systems for portable devices, including micro and mini fuel cells. The authors review the fundamental science of direct alcohol fuel cells, covering, in detail, thermodynamics, electrode kinetics and electrocatalysis of charge-transfer reactions, mass and heat transfer phenomena, and basic modeling aspects. In addition, the book examines other fuels in DAFCs, such as formic acid, ethylene glycol and glycerol, along with technological aspects and applications, including case studies and cost analysis. Researchers, engineering professionals, fuel cell developers, policymakers and senior graduate students will find this a valuable resource. The book's comprehensive coverage of fundamentals is especially useful for graduate students, advanced undergraduate students and those new to the field. - Provides a comprehensive understanding of the fundamentals of DAFCs and their basic components, design and performance - Presents current and complete information on the state-of-the-art of DAFC technology and its most relevant challenges for commercial deployment - Includes practical application examples, problems and case studies - Covers the use of other fuels, such as formic acid, ethylene glycol and glycerol
Green Chemical Synthesis with Microwaves and Ultrasound
Author: Dakeshwar Kumar Verma
Publisher: John Wiley & Sons
ISBN: 352735297X
Category : Science
Languages : en
Pages : 421
Book Description
Green Chemical Synthesis with Microwaves and Ultrasound A guide to the efficient and sustainable synthesis of organic compounds Chemical processes and the synthesis of compounds are essential aspects of numerous industries, and particularly central to the creation of drug-like structures. Their often significant environmental biproducts, however, have driven substantial innovations in the areas of green and organic synthesis, which have the potential to drive efficient, solvent-free synthesis and create more sustainable chemical processes. The use of microwaves and ultrasounds in chemical synthesis has proven an especially fruitful area of research, with the potential to produce a more sustainable industrial future. Green Chemical Synthesis with Microwaves and Ultrasound provides a comprehensive overview of recent advances in microwave- and ultrasound-driven synthesis and their cutting-edge applications. Green Chemical Synthesis with Microwaves and Ultrasound readers will also find: Introduction to the key equipment and tools of green chemical synthesis Detailed discussion of methods including ultrasound irradiation, metal-catalyzed reactions, enzymatic reactions, and many more An authorial team with immense experience in environmentally friendly organic chemical production Green Chemical Synthesis with Microwaves and Ultrasound is ideal for chemists, organic chemists, chemical engineers, biochemists, and any researchers or industry professionals working on the synthesis of chemicals and/or organic compounds.
Publisher: John Wiley & Sons
ISBN: 352735297X
Category : Science
Languages : en
Pages : 421
Book Description
Green Chemical Synthesis with Microwaves and Ultrasound A guide to the efficient and sustainable synthesis of organic compounds Chemical processes and the synthesis of compounds are essential aspects of numerous industries, and particularly central to the creation of drug-like structures. Their often significant environmental biproducts, however, have driven substantial innovations in the areas of green and organic synthesis, which have the potential to drive efficient, solvent-free synthesis and create more sustainable chemical processes. The use of microwaves and ultrasounds in chemical synthesis has proven an especially fruitful area of research, with the potential to produce a more sustainable industrial future. Green Chemical Synthesis with Microwaves and Ultrasound provides a comprehensive overview of recent advances in microwave- and ultrasound-driven synthesis and their cutting-edge applications. Green Chemical Synthesis with Microwaves and Ultrasound readers will also find: Introduction to the key equipment and tools of green chemical synthesis Detailed discussion of methods including ultrasound irradiation, metal-catalyzed reactions, enzymatic reactions, and many more An authorial team with immense experience in environmentally friendly organic chemical production Green Chemical Synthesis with Microwaves and Ultrasound is ideal for chemists, organic chemists, chemical engineers, biochemists, and any researchers or industry professionals working on the synthesis of chemicals and/or organic compounds.
Advanced Nanomaterials for Catalysis and Energy
Author: Vladislav A. Sadykov
Publisher: Elsevier
ISBN: 012814808X
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. - Outlines synthetic and characterization methods for nanocatalysts - Relates nanocatalysts' properties to their specific applications - Proposes optimization methods aiming at specific applications
Publisher: Elsevier
ISBN: 012814808X
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. - Outlines synthetic and characterization methods for nanocatalysts - Relates nanocatalysts' properties to their specific applications - Proposes optimization methods aiming at specific applications