Progress in Polymer Research for Biomedical, Energy and Specialty Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Progress in Polymer Research for Biomedical, Energy and Specialty Applications PDF full book. Access full book title Progress in Polymer Research for Biomedical, Energy and Specialty Applications by Anandhan Srinivasan. Download full books in PDF and EPUB format.

Progress in Polymer Research for Biomedical, Energy and Specialty Applications

Progress in Polymer Research for Biomedical, Energy and Specialty Applications PDF Author: Anandhan Srinivasan
Publisher: CRC Press
ISBN: 1000689549
Category : Technology & Engineering
Languages : en
Pages : 443

Book Description
With the rapid advancements in polymer research, polymers are finding newer applications such as scaffolds for tissue engineering, wound healing, flexible displays, and energy devices. In the same spirit, this book covers the key features of recent advancements in polymeric materials and their specialty applications. Divided into two sections – Polymeric Biomaterials and Polymers from Sustainable Resources, and Polymers for Energy and Specialty Applications – this book covers biopolymers, polymer-based biomaterials, polymer-based nanohybrids, polymer nanocomposites, polymer-supported regenerative medicines, and advanced polymer device fabrication techniques. FEATURES Provides a comprehensive review of all different polymers for applications in tissue engineering, biomedical implants, energy storage or conversion, and so forth Discusses advanced strategies in development of scaffolds for tissue engineering Elaborates various advanced fabrication techniques for polymeric devices Explores the nuances in polymer-based batteries and energy harvesting Reviews advanced polymeric membranes for fuel cells and polymers for printed electronics applications Throws light on some new polymers and polymer nanocomposites for optoelectronics, next generation tires, smart sensors and stealth technology applications This book is aimed at academic researchers, industry personnel, and graduate students in the interdisciplinary fields of polymer and materials technology, composite engineering, biomedical engineering, applied chemistry, chemical engineering, and advanced polymer manufacturing.

Sulfur-Containing Polymers

Sulfur-Containing Polymers PDF Author: Xing-Hong Zhang
Publisher: John Wiley & Sons
ISBN: 3527823808
Category : Technology & Engineering
Languages : en
Pages : 482

Book Description
A must-have resource to the booming field of sulfur-containing polymers Sulfur-Containing Polymers is a state-of-the-art text that offers a synthesis of the various sulfur-containing polymers from low-cost sulfur resources such as elemental sulfur, carbon disulfide (CS2), carbonyl sulfide (COS) and mercaptan. With contributions from noted experts on the topic, the book presents an in-depth understanding of the mechanisms related to the synthesis of sulfur-containing polymers. The book also includes a review of the various types of sulfur-containing polymers, such as: poly(thioester)s, poly(thioether)s and poly(thiocarbonate)s and poly(thiourethane)s with linear or hyperbranched (dendrimer) architectures. The expert authors provide the fundamentals on the structure-property relationship and applications of sulfur-containing polymers. Designed to be beneficial for both research and application-oriented chemists and engineers, the book contains the most recent research and developments of sulfur-containing polymers. This important book: Offers the first comprehensive handbook on the topic Contains state-of-the-art research on synthesis of sulfur containing polymers from low-cost sulfur-containing compounds Examines the synthesis, mechanism, structure properties, and applications of various types of sulful-containing polymers Includes contributions from well-known experts Written for polymer chemists, materials scientists, chemists in industry, biochemists, and chemical engineers, Sulfur-Containing Polymers offers a groundbreaking text to the field with inforamtion on the most recent research.

Progress in Polymer Research for Biomedical, Energy and Specialty Applications

Progress in Polymer Research for Biomedical, Energy and Specialty Applications PDF Author: Anandhan Srinivasan
Publisher: CRC Press
ISBN: 1000689549
Category : Technology & Engineering
Languages : en
Pages : 443

Book Description
With the rapid advancements in polymer research, polymers are finding newer applications such as scaffolds for tissue engineering, wound healing, flexible displays, and energy devices. In the same spirit, this book covers the key features of recent advancements in polymeric materials and their specialty applications. Divided into two sections – Polymeric Biomaterials and Polymers from Sustainable Resources, and Polymers for Energy and Specialty Applications – this book covers biopolymers, polymer-based biomaterials, polymer-based nanohybrids, polymer nanocomposites, polymer-supported regenerative medicines, and advanced polymer device fabrication techniques. FEATURES Provides a comprehensive review of all different polymers for applications in tissue engineering, biomedical implants, energy storage or conversion, and so forth Discusses advanced strategies in development of scaffolds for tissue engineering Elaborates various advanced fabrication techniques for polymeric devices Explores the nuances in polymer-based batteries and energy harvesting Reviews advanced polymeric membranes for fuel cells and polymers for printed electronics applications Throws light on some new polymers and polymer nanocomposites for optoelectronics, next generation tires, smart sensors and stealth technology applications This book is aimed at academic researchers, industry personnel, and graduate students in the interdisciplinary fields of polymer and materials technology, composite engineering, biomedical engineering, applied chemistry, chemical engineering, and advanced polymer manufacturing.

Semiconducting Polymer Composites

Semiconducting Polymer Composites PDF Author: Xiaoniu Yang
Publisher: John Wiley & Sons
ISBN: 3527648704
Category : Technology & Engineering
Languages : en
Pages : 553

Book Description
The first part of Semiconducting Polymer Composites describes the principles and concepts of semiconducting polymer composites in general, addressing electrical conductivity, energy alignment at interfaces, morphology, energy transfer, percolation theory and processing techniques. In later chapters, different types of polymer composites are discussed: mixtures of semiconducting and insulating or semiconducting and semiconducting components, respectively. These composites are suitable for a variety of applications that are presented in detail, including transistors and solar cells, sensors and detectors, diodes and lasers as well as anti-corrosive and anti-static surface coatings.

Small-Molecule Semiconductors for High-Efficiency Organic Solar Cells

Small-Molecule Semiconductors for High-Efficiency Organic Solar Cells PDF Author: Chuanlang Zhan
Publisher: Frontiers Media SA
ISBN: 2889459802
Category :
Languages : en
Pages : 184

Book Description


Conjugated Conducting Polymers

Conjugated Conducting Polymers PDF Author: Helmut Kiess
Publisher: Springer Science & Business Media
ISBN: 3642467296
Category : Science
Languages : en
Pages : 320

Book Description
This book reviews the current understanding of electronic, optical and magnetic properties of conjugated polymers in both the semiconducting and metallic states. It introduces in particular novel phenomena and concepts in these quasi one-dimensional materials that differ from the well-established concepts valid for crystalline semiconductors. After a brief introductory chapter, the second chapter presents basic theore tical concepts and treats in detail the various models for n-conjugated polymers and the computational methods required to derive observable quantities. Specific spatially localized structures, often referred to as solitons, polarons and bipolarons, result naturally from the interaction between n-electrons and lattice displacements. For a semi-quantitative understanding of the various measure ments, electron-electron interactions have to be incorporated in the models; this in turn makes the calculations rather complicated. The third chapter is devoted to the electrical properties of these materials. The high metallic conductivity achieved by doping gave rise to the expression conducting polymers, which is often used for such materials even when they are in their semiconducting or insulating state. Although conductivity is one of the most important features, the reader will learn how difficult it is to draw definite conclusions about the nature of the charge carriers and the microscopic transport mechanism solely from electrical measurements. Optical properties are discussed in the fourth chapter.

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications PDF Author: Srabanti Ghosh
Publisher: John Wiley & Sons
ISBN: 3527820108
Category : Technology & Engineering
Languages : en
Pages : 528

Book Description
A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.

Metal-Catalyzed Polymerization

Metal-Catalyzed Polymerization PDF Author: Samir Chikkali
Publisher: CRC Press
ISBN: 1351649957
Category : Science
Languages : en
Pages : 188

Book Description
The proposed book focusses on metal mediated/catalyzed “controlled/living radical polymerization” (CRP/LRP) methods. It surveys a wide variety of catalyzed polymerization reactions, making it essentially a “one stop” review in the field. A significant contribution to polymer science is “metathesis polymerization” discovered by Grubbs and others. The book will cover various metathesis polymerization methods and implications in polymer industry.

Polymers for Light-emitting Devices and Displays

Polymers for Light-emitting Devices and Displays PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119654602
Category : Technology & Engineering
Languages : en
Pages : 288

Book Description
Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.

Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119724708
Category : Science
Languages : en
Pages : 578

Book Description
Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Large Area and Flexible Electronics

Large Area and Flexible Electronics PDF Author: Mario Caironi
Publisher: John Wiley & Sons
ISBN: 3527680004
Category : Technology & Engineering
Languages : en
Pages : 592

Book Description
From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance. Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applications of large-area electronics, including flexible and ultra-high-resolution displays, light-emitting transistors, organic and inorganic photovoltaics, large-area imagers and sensors, non-volatile memories and radio-frequency identification tags. With its academic and industrial viewpoints, this volume provides in-depth knowledge for experienced researchers while also serving as a first-stop resource for those entering the field.