Synthesis and Characterization of Non-PGM Catalysts for Fuel Cell Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Synthesis and Characterization of Non-PGM Catalysts for Fuel Cell Applications PDF full book. Access full book title Synthesis and Characterization of Non-PGM Catalysts for Fuel Cell Applications by Sudharsan Sridhar. Download full books in PDF and EPUB format.

Synthesis and Characterization of Non-PGM Catalysts for Fuel Cell Applications

Synthesis and Characterization of Non-PGM Catalysts for Fuel Cell Applications PDF Author: Sudharsan Sridhar
Publisher:
ISBN:
Category : Carbon compounds
Languages : en
Pages : 0

Book Description
Fuel Cells convert the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Proton Exchange Membrane (PEM) fuel cells convert (efficiency-60%) hydrogen and air to power the electric motors with zero emissions, facilitating the development of environmentally friendly and sustainable automobile technologies. One of the major obstacles for larger commercial viability of Fuel Cells for automobile applications is their cost-effectiveness. Currently, fuel cells use platinum as a catalyst material, which is prohibitively expensive for commercial automobile applications. The development of non-Platinum Group Metal (non-PGM) catalyst materials with similar electrochemical performance to that of Platinum is essential for adopting fuel cells in automobile technologies in a big way. Hence, this research focused on the synthesis and characterization of three different non-PGM catalyst materials based on graphene and graphene oxide with nitrogen and Zeolite Imidazole Frameworks (ZIF) and an additional transition metal (Fe) loading. Various characterization techniques were performed to analyze the chemical, morphological, and electrochemical properties of each of these synthesized materials. The synthesized catalyst materials are N-GR-ZIF, N-RGO-ZIF, and N-RGO-Fe-ZIF with varying nitrogen doping. N-RGO-Fe-ZIF exhibited electrochemical characteristics that are quite comparable to that of Pt-based catalysts. The details of the synthesis process and characterization of the synthesized materials are discussed in this dissertation.

Synthesis and Characterization of Non-PGM Catalysts for Fuel Cell Applications

Synthesis and Characterization of Non-PGM Catalysts for Fuel Cell Applications PDF Author: Sudharsan Sridhar
Publisher:
ISBN:
Category : Carbon compounds
Languages : en
Pages : 0

Book Description
Fuel Cells convert the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Proton Exchange Membrane (PEM) fuel cells convert (efficiency-60%) hydrogen and air to power the electric motors with zero emissions, facilitating the development of environmentally friendly and sustainable automobile technologies. One of the major obstacles for larger commercial viability of Fuel Cells for automobile applications is their cost-effectiveness. Currently, fuel cells use platinum as a catalyst material, which is prohibitively expensive for commercial automobile applications. The development of non-Platinum Group Metal (non-PGM) catalyst materials with similar electrochemical performance to that of Platinum is essential for adopting fuel cells in automobile technologies in a big way. Hence, this research focused on the synthesis and characterization of three different non-PGM catalyst materials based on graphene and graphene oxide with nitrogen and Zeolite Imidazole Frameworks (ZIF) and an additional transition metal (Fe) loading. Various characterization techniques were performed to analyze the chemical, morphological, and electrochemical properties of each of these synthesized materials. The synthesized catalyst materials are N-GR-ZIF, N-RGO-ZIF, and N-RGO-Fe-ZIF with varying nitrogen doping. N-RGO-Fe-ZIF exhibited electrochemical characteristics that are quite comparable to that of Pt-based catalysts. The details of the synthesis process and characterization of the synthesized materials are discussed in this dissertation.

Non-Noble Metal Fuel Cell Catalysts

Non-Noble Metal Fuel Cell Catalysts PDF Author: Zhongwei Chen
Publisher: John Wiley & Sons
ISBN: 3527664920
Category : Technology & Engineering
Languages : en
Pages : 448

Book Description
Written and edited by top fuel cell catalyst scientists and engineers from both industry and academia, this is the first book to provide a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal electrocatalysts, as well as their integration into fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured approach, this is a must-have for researchers working on the topic, and an equally valuable companion for newcomers to the field.

Synthesis and Characterization of Nanoalloys and Non-precious Metal Catalysts for Energy and Environmental Applications

Synthesis and Characterization of Nanoalloys and Non-precious Metal Catalysts for Energy and Environmental Applications PDF Author: Heather Marie Barkholtz
Publisher:
ISBN: 9781369000382
Category : Alloys
Languages : en
Pages : 251

Book Description
Two major project areas are reported in this work. First, a new lithium-assisted dissolution-alloying nanoalloy synthesis technique will be introduced. The development of a new nanoalloy synthesis method is desirable to circumvent issues with traditional co-reduction of metal salt methodology. Co-reduction of metal salts can result in unintended core-shell formation due to different metal ion reduction potentials, as well as oxidation of one component resulting in dealloying of the material when it is exposed to air. In order to best address these issues with a new technique, Pd3Ag, PdPt, and PdZn systems were studied because Pd3Ag and PdPt tend to form core-shell structures while PdZn is incredibly difficult to synthesize due to the propensity of Zn to oxidize. The metal nanoalloy systems described in this work (Pd 3Ag, PdPt, and PdZn) were prepared by directly dispersing individual bulk metal alloys (Pd3Ag) or individual bulk metals (Pd, Pt, and Zn) into molten lithium to form an atomic metal dispersion. The lithium melt is then cooled, removed from the glove box, and converted to LiOH, which allows for the metal atoms to self-assemble into nanoalloys. Alloy structure and nanoscale size were confirmed via XRD, TEM, EXAFS, and XANES methods. The catalytic activity of the Pd3Ag system was investigated towards the hydrogenation of acrolein, and the PdPt system was used for methanol electro-oxidation. Both Pd3Ag and PdPt nanoalloy systems gave substantial improvements in their respective catalytic applications over a Pd or Pt standard, respectively. The next project focuses on the rational design and preparation of metal-organic framework (MOF)-derived electrocatalyst materials for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). MOF-derived electrocatalysts are non-platinum group metal (non-PGM) materials and are leading candidates for transportation applications due to their low cost, relatively low operating temperature, capacity to achieve high power density, and direct conversion of chemical to electrical energy acting to improve fuel utilization efficiency. Cathodic ORR is typically sluggish compared to the anodic hydrogen oxidation reaction, requiring more catalyst material to achieve comparable performance. Therefore, research into non-PGM catalysts focuses on the cathodic material design and activation. In this part of the dissertation the focus is to tackle the aggressive milestones set by the U.S. Department of Energy for non-PGM catalysts. First, a series of investigations into the effect of different iron additives and carbon additives on the ORR performance and electrode characteristics was carried out using a one-pot all solid-state synthesis technique to prepare ZIF-8 materials. ZIF-8 is a specific type of MOF which has a Zn2+ metal center bonded to two 2-methylimidazole ligands, forming a three-dimensional matrix with high surface area. After the ZIF-8 was prepared, it was ball milled, pyrolyzed, acid washed, and thermally activated once again in a NH3 environment to yield ORR electrocatalysts consisting of an iron and nitrogen-doped carbon (Fe-N-C) morphology. This one-pot all solid-state synthesis method also allows for investigation into the effect of changing 2-methylimidazole to imidazole on the ORR activity. The effect of this change was determined through catalyst morphology and component characterization and well and electrochemical methods. Finally, ZIF-8 synthesized by wet chemistry was used to prepare the same type of Fe-N-C material as described above. A simple method of tailoring the surface structure and porosity is introduced through careful control of the time spent in NH3 environment. NH3 serves to etch the surface of the material as a function of time spent, which results in widening of pores and removal of surface atoms. Careful control and optimization of NH3 activation conditions allowed for significant improvements in ORR activity in a single fuel cell. Finally, the impact of triple phase boundary penetration on air fed fuel cell data was investigated. Furthermore, it was discovered than when air is used as the oxidant fuel, a break-in period of catalyst improvement exists during the first few polarization curves. It is proposed that scanning to high currents produces water in microporous areas, wetting Nafion ionomer and including those areas in the TPB network.

Synthesis and Characterization of Carbon Catalyst Substrates for Fuel Cell Applications

Synthesis and Characterization of Carbon Catalyst Substrates for Fuel Cell Applications PDF Author: Ashley Dawn Moore
Publisher:
ISBN:
Category :
Languages : en
Pages : 230

Book Description


Characterization and Optimization of Carbon Based Electrocatalysts and Supports for Fuel Cell Applications

Characterization and Optimization of Carbon Based Electrocatalysts and Supports for Fuel Cell Applications PDF Author: Abhinav Poozhikunnath
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Book Description
The use of expensive platinum-based catalysts has been a major obstacle for the widespread use of low temperature fuel cells. As a result, there is significant commercial and scientific interest in replacing platinum-based electrocatalysts with cost-effective alternatives of comparable performance. This thesis explores the process-structure-property relationship of platinum group metal-free (PGM-free), metal-nitrogen-doped carbon (M-N-C) electrocatalysts for oxygen reduction synthesized by a flame spray pyrolysis process called Reactive Spray Deposition Technology (RSDT). Metal-Nitrogen-Carbon (M-N-C) type Platinum Group Metal-free (PGM-free) electrocatalyst, synthesized directly from liquid solution precursors by the partial combustion of organic material in the RSDT flame. Central to this work is the modification of the RSDT for carbon synthesis using liquid aromatic hydrocarbon-based precursors. The direct synthesis of the M-N-C electrocatalysts using an open atmosphere flame spray pyrolysis technique, has not been reported previously and offers a scalable alternative to the energy-intensive, multi-step furnace-based processes that are conventionally used for synthesizing M-N-C catalysts. The physical and chemical characteristics of the synthesized material are examined and the performance of the catalyst with respect to RSDT process parameters such as precursor composition and fuel equivalence ratio are analyzed with an aim of preparing the groundwork for further development of the synthesis process. The baseline Fe-N-C catalyst synthesized by RSDT exhibits activity towards oxygen reduction in alkaline media and shows excellent dynamic stability even after 4000 potential cycles. Based on these results, additional efforts needed to optimize the RSDT process parameters to improve catalyst activity and for mass-producing M-N-C electrodes are also discussed. As a second subject, this thesis also investigates an application of multi-scale correlative characterization in quality control of carbon black for fuel cell and battery applications. A workflow using correlative characterization techniques including X-CT, laser-milling and elemental analysis is described. Potential failure modes are discussed based on the properties of the impurities analyzed and a case is made for the use of correlative characterization for establishing standards of quality control in commercially produced fuel cell and battery components.

Synthesis and Characterization of PT-based Fuel Cell Catalysts

Synthesis and Characterization of PT-based Fuel Cell Catalysts PDF Author: Hee Soo Kim
Publisher:
ISBN:
Category :
Languages : en
Pages : 262

Book Description


Electrocatalysis for Membrane Fuel Cells

Electrocatalysis for Membrane Fuel Cells PDF Author: Nicolas Alonso-Vante
Publisher: John Wiley & Sons
ISBN: 3527830561
Category : Technology & Engineering
Languages : en
Pages : 581

Book Description
Electrocatalysis for Membrane Fuel Cells Comprehensive resource covering hydrogen oxidation reaction, oxygen reduction reaction, classes of electrocatalytic materials, and characterization methods Electrocatalysis for Membrane Fuel Cells focuses on all aspects of electrocatalysis for energy applications, covering perspectives as well as the low-temperature fuel systems principles, with main emphasis on hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR). Following an introduction to basic principles of electrochemistry for electrocatalysis with attention to the methods to obtain the parameters crucial to characterize these systems, Electrocatalysis for Membrane Fuel Cells covers sample topics such as: Electrocatalytic materials and electrode configurations, including precious versus non-precious metal centers, stability and the role of supports for catalytic nano-objects; Fundamentals on characterization techniques of materials and the various classes of electrocatalytic materials; Theoretical explanations of materials and systems using both Density Functional Theory (DFT) and molecular modelling; Principles and methods in the analysis of fuel cells systems, fuel cells integration and subsystem design. Electrocatalysis for Membrane Fuel Cells quickly and efficiently introduces the field of electrochemistry, along with synthesis and testing in prototypes of materials, to researchers and professionals interested in renewable energy and electrocatalysis for chemical energy conversion.

Design, Synthesis, and Characterization of Fuel Cell Electrocatalysts for the Direct Oxidation of Organic Fuels

Design, Synthesis, and Characterization of Fuel Cell Electrocatalysts for the Direct Oxidation of Organic Fuels PDF Author: Aurora Marie Cabrera Fojas
Publisher:
ISBN:
Category :
Languages : en
Pages : 424

Book Description


Synthesis and Characterization of Binary and Ternary Platinum Alloy Catalysts for Direct Methanol Fuel Cell Application

Synthesis and Characterization of Binary and Ternary Platinum Alloy Catalysts for Direct Methanol Fuel Cell Application PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Single Atom Catalysts

Single Atom Catalysts PDF Author: Prashanth W. Menezes
Publisher: Elsevier
ISBN: 0323952380
Category : Technology & Engineering
Languages : en
Pages : 270

Book Description
Single Atom Catalysts: Design, Synthesis, Characterization, and Applications in Energy focuses on the synthesis, design and advanced characterization techniques for single atom catalyst materials and their direct energy conversion and storage applications. This book reviews emerging applications of single atom catalysts in fuel cells, batteries, water splitting, carbon dioxide reduction, and nitrogen fixation. Both noble metal and non-noble metal single atom catalysts (SACs) are discussed as noble metal-based SACs are highly efficient and non-noble metal-based SACs might have lower associated costs. There is an emphasis on materials design focused on improving performance of catalysts based on overall catalytic activity, selectivity and stability. Specific parameters that impact this performance are emphasized throughout the book, including single metal atom stabilization, metal-support interactions and the coordination environment. Discusses the different intricate design and synthesis methods pertaining to various noble and non-noble metal-based SACs Provides in-depth understanding about the structural, morphological, and physicochemical characterization techniques of synthesized SACs with data analysis and interpretation Describes state-of-the-art applications of SACs in renewable energy generation and their conversion, storage, and associated challenges