Synthesis and Characterization of Late Transition Metal Complexes of [N2S2]2− Ligand Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Synthesis and Characterization of Late Transition Metal Complexes of [N2S2]2− Ligand Systems PDF full book. Access full book title Synthesis and Characterization of Late Transition Metal Complexes of [N2S2]2− Ligand Systems by Eric Meyer Martin. Download full books in PDF and EPUB format.

Synthesis and Characterization of Late Transition Metal Complexes of [N2S2]2− Ligand Systems

Synthesis and Characterization of Late Transition Metal Complexes of [N2S2]2− Ligand Systems PDF Author: Eric Meyer Martin
Publisher:
ISBN:
Category :
Languages : en
Pages : 518

Book Description


Synthesis and Characterization of Late Transition Metal Complexes of [N2S2]2− Ligand Systems

Synthesis and Characterization of Late Transition Metal Complexes of [N2S2]2− Ligand Systems PDF Author: Eric Meyer Martin
Publisher:
ISBN:
Category :
Languages : en
Pages : 518

Book Description


Synthesis and Characterization of Transition Metal Complexes of the Ligand DDDT−2, 5,6-Dihydro-l,4-dithiin-2,3-dithiolate

Synthesis and Characterization of Transition Metal Complexes of the Ligand DDDT−2, 5,6-Dihydro-l,4-dithiin-2,3-dithiolate PDF Author: Jane Alena Hanna Welch
Publisher:
ISBN:
Category :
Languages : en
Pages : 570

Book Description


Synthesis and Characterization of Helical Ligand Transition Metal Complexes

Synthesis and Characterization of Helical Ligand Transition Metal Complexes PDF Author: Andrew Fessak
Publisher:
ISBN:
Category :
Languages : en
Pages : 197

Book Description


The Synthesis and Characterization of Some Transition Metal Complexes Derived from Oxime Ligands

The Synthesis and Characterization of Some Transition Metal Complexes Derived from Oxime Ligands PDF Author: Gary A. Nicholson
Publisher:
ISBN:
Category :
Languages : en
Pages : 362

Book Description


Synthesis, Characterization, and Reactivity of Transition Metal Complexes Containing Multi-donor Ligands

Synthesis, Characterization, and Reactivity of Transition Metal Complexes Containing Multi-donor Ligands PDF Author: John C. Linehan
Publisher:
ISBN:
Category :
Languages : en
Pages : 514

Book Description


The Synthesis, Characterization, and Reactivity of First-row Late Transition Metal Complexes Containing Tridentate Pincer-type N-heterocyclic Phosphenium Ligands

The Synthesis, Characterization, and Reactivity of First-row Late Transition Metal Complexes Containing Tridentate Pincer-type N-heterocyclic Phosphenium Ligands PDF Author: Sadie E. Knight
Publisher:
ISBN:
Category : Ligand binding (Biochemistry)
Languages : en
Pages : 276

Book Description


Synthesis and Reactivity of Late Transition Metal Complexes Featuring a Bis(8-quinolyl)methylsilyl Ligand

Synthesis and Reactivity of Late Transition Metal Complexes Featuring a Bis(8-quinolyl)methylsilyl Ligand PDF Author: Preeyanuch Sangtrirutnugul
Publisher:
ISBN:
Category :
Languages : en
Pages : 684

Book Description


Synthesis, Characterization and Reactivity Studies of Low-coordinate Late Transition Metal Complexes and the Preparation and Characterization of a Low-coordinate Samarium Complex

Synthesis, Characterization and Reactivity Studies of Low-coordinate Late Transition Metal Complexes and the Preparation and Characterization of a Low-coordinate Samarium Complex PDF Author: Pei Zhao
Publisher:
ISBN: 9781339544052
Category :
Languages : en
Pages :

Book Description
This dissertation focuses on the synthesis, characterization and reactivity study of terphenyl ligand stabilized bis([mu]-oxo) dimeric iron and cobalt complexes. The synthesis and characterization of low-coordinate cobalt alkyl and iron alkyl complexes are also described. In addition, it describes the preparation of the first monomeric homoleptic solvent-free bis(aryloxide) lanthanide complex. The solid state structures of new compounds were determined by single crystal X-ray crystallography. Magnetic properties of paramagnetic compounds were measured by superconducting quantum interference device (SQUID) or Evans' methods for solid state or solution phase, respectively. The new compounds were also characterized by UV-Visible spectroscopy. Furthermore, infrared spectroscopy, Mössbauer spectroscopy, electron paramagnetic resonance spectroscopy, mass spectrometry, cyclic voltammetry and elemental analysis were employed to characterize some of the compounds when applicable. In some cases, DFT calculations were applied to elucidate the bonding and energy levels of molecular orbitals in the complexes. In Chapter 2, The bis([mu]-oxo) dimeric complexes {Ar[superscript iPr8]OM([mu]-O)}2 (Ar [superscript iPr8] = -C6H-2,6-(C6H2-2,4,6-[superscript i]Pr3)2-3,5-[superscript i]Pr2; M = Fe or Co) were prepared by oxidation of the metal (I) half-sandwich complexes {Ar[superscript iPr8]M([eta]6-arene)} (arene = benzene or toluene; M = Fe or Co). The iron species {Ar[superscript iPr8]OFe([mu]-O)}2 was prepared by reacting {Ar[superscript iPr8]Fe([eta]6-benzene)} with N2O or O2 and the cobalt species {Ar[superscript iPr8]OCo([mu]-O)}2 was prepared by reacting {Ar[superscript iPr8]Co([eta]6-toluene)} with O2. Both {Ar[superscript iPr8]OFe([mu]-O)}2 and {Ar[superscript iPr8]OCo([mu]-O)}2 were characterized by X-ray crystallography, UV-vis spectroscopy, magnetic measurements and, in the case of the iron species, by Mössbauer spectroscopy. The solid-state structures of both compounds reveal unique M2([mu]-O)2 (M = Fe or Co) cores with formally three-coordinate metal ions. The Fe···Fe separation in {Ar[superscript iPr8]OFe([mu]-O)}2 bears a resemblance to that in the Fe2([mu]-O)2 diamond core proposed for the methane monooxygenase intermediate Q. The structural differences between {Ar[superscript iPr8]OFe([mu]-O)}2 and {Ar[superscript iPr8]OCo([mu]-O)}2 are reflected in rather differing magnetic behavior. Compound {Ar[superscript iPr8]OCo([mu]-O)}2 is thermally unstable and its decomposition at room temperature resulted in the oxidation of the Ar[superscript iPr8] ligand via oxygen insertion and addition to the central aryl ring of the terphenyl ligand to produce the 5,5'-peroxy-bis[4,6-[superscript i]Pr2-3,7-bis(2,4,6-iPr3-phenyl)oxepin-2(5H)-one]. The structure of the oxidized terphenyl species is closely related to that of a key intermediate proposed for the oxidation of benzene. In Chapter 3, the homoleptic, cobalt(I) alkyl [Co{C(SiMe2Ph)3}]2 was prepared by reacting CoCl2 with [Li{C(SiMe2Ph)3}(THF)] in a 1:2 ratio though the initial intent was to synthesize a dialkyl cobalt (II) complex. Attempts to synthesize the corresponding iron(I) species led to the iron(II) salt [Li(THF)4][Fe2([mu]-Cl)3{C(SiMe2Ph)3}2]. Both complexes were characterized by X-ray crystallography, UV-vis spectroscopy, and magnetic measurements. The structure of [Co{C(SiMe2Ph)3}]2 consists of dimeric units in which each cobalt(I) ion is [sigma]-bonded to the central carbon of the alkyl group -C(SiMe2Ph)3 and [pi]-bonded to one of the phenyl rings of the -C(SiMe2Ph)3 ligand attached to the other cobalt(I) ion in the dimer. The structure of [Li(THF)4][Fe2([mu]-Cl)3{C(SiMe2Ph)3}2] features three chlorides bridging two iron(II) ions. Each iron (II) ion is also [sigma]-bonded to the central carbon of a terminal -C(SiMe2Ph)3 anionic ligand. The magnetic properties of [Co{C(SiMe2Ph)3}]2 reveal the presence of two independent cobalt (I) ions with S = 1 and a significant zero-field splitting of D = 38.0(2) cm−1. The magnetic properties of [Li(THF)4][Fe2([mu]-Cl)3{C(SiMe2Ph)3}2] reveal extensive antiferromagnetic exchange coupling with J = -149(4) cm−1 and a large second-order Zeeman contribution to its molar magnetic susceptibility. Formation of the alkyl [Co{C(SiMe2Ph)3}]2 and the halide complex [Li(THF)4][Fe2([mu]-Cl)3{C(SiMe2Ph)3}2] under similar conditions is probably due to the fact that Co(II) is more readily reduced than Fe(II). Some other synthetic routes were also attempted to synthesize a dialkyl cobalt (II) complex and they are described in this chapter. Neither [Co(NPh2)2]2 nor cobaltocene reacts with [Li{C(SiMe2Ph)3}(THF)] to afford a dialkyl cobalt (II) complex. Metathesis reactions of cobalt halides with lithium salts of alkyl ligand HCPh2R (R = -Ph or -SiMe3) resulted in the reduction of cobalt (II) to cobalt metal and the coupling of ligands, which indicate that homolytic cleavage of the cobalt-carbon bond was probably involved in the metathesis reactions. Furthermore, in chapter 4, reaction of Sm[N(SiMe3)2]2(THF)2 with two equivalents of bulky aryloxide ligand HOAr[superscript iPr6] (Ar[superscript iPr6] = -C6H3-2,6-(C6H2-2,4,6-[superscript i]Pr3)2) afforded the first monomeric homoleptic solvent-free bis(aryloxide) lanthanide complex Sm(OAr[superscript iPr6])2. The complex was characterized by crystallography, UV-Visible spectrum, IR and magnetically by the Evans' method. The O-Sm-O angle is bent at 111.08(9)̊. The samarium ion in Sm(OAr[superscript iPr6])2 also shows weak interactions with the flanking aryl rings of the terphenyloxide ligands. The complex is paramagnetic at room temperature with magnetic moment of 3.51 [mu]B.

Synthesis and Characterization of Transition Metal Complexes with Bulky Tin Ligands for Application in Small Molecule Activation

Synthesis and Characterization of Transition Metal Complexes with Bulky Tin Ligands for Application in Small Molecule Activation PDF Author: Veeranna Yempally
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The role of bulky tin ligands in the stabilization of transition metal complexes with electronic unsaturation has been studied to understand the mode of binding of small molecules at an unsaturated metal center. We were able to isolate electronically unsaturated Pt-Sn bimetallic complexes effective in the reversible activation of small molecules including CO, H2, C2H4, and NH3 at room temperature. We have examined the effect of the modification of ligands in Pt-Sn bimetallic complexes for the activation of small molecules and have observed that the Pt(SnBut3)2(CNBut)2 bimetallic complex reversibly activates hydrogen at room temperature both in the solid state and in solution. Similarly, we have also prepared bimetallic Pt-Sn complexes with an NHC carbine ligand which were also shown to activate hydrogen and alkenes reversibly. A bimetallic Fe-Sn cluster complex, Fe2 ([mu]-SnBut2)2(CO)8, was synthesized from the reaction of But3SnH with the Fe2(CO)9 and shown to be selective at activating the benzylic C-H bond of alkylaromatic solvent molecules. The new complexes containing tin have been characterized spectroscopically to gain an insight into the reaction mechanism involved in small molecule activation.

Synthesis and Characterization of New CN-based Transition Metal Complexes

Synthesis and Characterization of New CN-based Transition Metal Complexes PDF Author: Omar Mowafaq Younis Al-Ramadhani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description