Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell PDF full book. Access full book title Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell by . Download full books in PDF and EPUB format.

Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H2-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H2S in the H2-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H2S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. In this work binary, ternary, and quaternary platinum-based electrocatalysts were synthesized for the purpose of lowering the cost and increasing the CO tolerance of the membrane electrode assembly (MEA) in the fuel cell. The metals Ru, Mo, W, Ir, Co and Se were alloyed with platinum on a carbon support using a modified reduction method. These catalysts were fabricated into MEAs and evaluated for electrical performance and CO tolerance with polarization experiments. The quaternary system Pt/Ru/Mo/Ir system is the most CO tolerant in the PEMFC and has a low total metal loading of 0.4 mg/cm2 in the electrode of the cell.

Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H2-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H2S in the H2-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H2S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. In this work binary, ternary, and quaternary platinum-based electrocatalysts were synthesized for the purpose of lowering the cost and increasing the CO tolerance of the membrane electrode assembly (MEA) in the fuel cell. The metals Ru, Mo, W, Ir, Co and Se were alloyed with platinum on a carbon support using a modified reduction method. These catalysts were fabricated into MEAs and evaluated for electrical performance and CO tolerance with polarization experiments. The quaternary system Pt/Ru/Mo/Ir system is the most CO tolerant in the PEMFC and has a low total metal loading of 0.4 mg/cm2 in the electrode of the cell.

SYNTHESIS AND CHARACTERIZATION OF CO- AND H{sub 2}S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL.

SYNTHESIS AND CHARACTERIZATION OF CO- AND H{sub 2}S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL. PDF Author: Shamsuddin Ilias
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period several tri-metallic electrocatalysts were synthesized using both ultra-sonication and conventional method. These catalysts (Pt/Ru/Mo, Pt/Ru/Ir, Pt/Ru/W, Ptr/Ru/Co, and Pt/Ru/Se on carbon) were tested in MEAs. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/Mo/C> Pt/Ru/Ir/C> Pt/Ru/W/C> Ptr/Ru/Co/C> and Pt/Ru/Se. It appears that electrocatalysts prepared by ultra-sonication process are more active compared to the conventional technique. Work is in progress to further study these catalysts for CO-tolerance in PEMFC.

PEM Fuel Cell Electrocatalysts and Catalyst Layers

PEM Fuel Cell Electrocatalysts and Catalyst Layers PDF Author: Jiujun Zhang
Publisher: Springer Science & Business Media
ISBN: 1848009364
Category : Technology & Engineering
Languages : en
Pages : 1147

Book Description
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Synthesis and Characterization of Electrocatalyst Libraries for PEM Fuel Cells

Synthesis and Characterization of Electrocatalyst Libraries for PEM Fuel Cells PDF Author: Kousik Ganesan
Publisher:
ISBN:
Category :
Languages : en
Pages : 234

Book Description
Conversion of energy stored in renewable fuels for sustained and environment friendly operation necessitates new technologies. Polymer electrolyte membrane fuel cells represent an energy conversion technology that has advantages of high operating efficiencies with low hazardous emissions. However the discovery of more active and poison tolerant catalysts for anode and cathode reactions remains a major barrier to commercialization of this technology. The search for improved catalyst formulations is hindered by the massive parameter space available for their construction. Combinatorial methods represent an exploration process well suited to accelerate this discovery through the ability to generate and screen a multitude of compositions in a single experiment. In this work, we describe a combinatorial strategy to generate a wide variety of catalyst compositions (single/binary) and interrogate their activity directly in an electrochemical environment. Catalyst library fabrication tools based upon array deposition methods were used to prepare samples possessing catalyst combinations containing Pt and additional metals such as Ru, Rh, Mo, Ir, Nb, Ta, Pd, Sn, Os and W. High throughput screening of catalytic activity was accomplished by scanning electrochemical microscopy (SECM). Reactivity maps were constructed by directly measuring the kinetics of hydrogen oxidation with a scanning microelectrode probe in the presence and absence of adsorbed carbon monoxide. Results provide quantitative rate constants for hydrogen oxidation and poison tolerance over a broad sampling of catalyst compositions.

Design, Synthesis, and Characterization of Fuel Cell Electrocatalysts for the Direct Oxidation of Organic Fuels

Design, Synthesis, and Characterization of Fuel Cell Electrocatalysts for the Direct Oxidation of Organic Fuels PDF Author: Aurora Marie Cabrera Fojas
Publisher:
ISBN:
Category :
Languages : en
Pages : 424

Book Description


Synthesis and Characterization of Nano- Structured Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells

Synthesis and Characterization of Nano- Structured Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells PDF Author: Thomas Jefferson Cochell
Publisher:
ISBN:
Category :
Languages : en
Pages : 390

Book Description
Proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are two types of low-temperature fuel cells (LTFCs) that operate at temperatures less than 100 °C and are appealing for portable, transportation, and stationary applications. However, commercialization has been hampered by several problems such as cost, efficiency, and durability. New electrocatalysts must be developed that have higher oxygen reduction reaction (ORR) activity, lower precious metal loadings, and improved durability to become commercially viable. This dissertation investigates the development and use of new electrocatalysts for the ORR. Core-shell (shell@core) Pt@Pd[subscript x]Cu[subscript y]/C electrocatalysts, with a range of initial compositions, were synthesized to result in a Pt-rich shell atop a Pd[subscript x]C[subscript y]-rich core. The interaction between core and shell resulted in a delay in the onset of Pt-OH formation, accounting in a 3.5-fold increase in Pt-mass activity compared to Pt/C. The methanol tolerance of the core-shell Pt@PdCu5/C was found to decrease with increasing Pt-shell coverage due to the negative potential shift in the CO oxidation peak. It was discovered that Cu leached out from the cathode has a detrimental effect on membrane-electrode assembly performance. A spray-assisted impregnation method was developed to reduce particle size and increase dispersion on the support in a consistent manner for a Pd88W12/C electrocatalyst. The spray-assisted method resulted in decreased particle size, improved dispersion and more uniform drying compared to a conventional method. These differences resulted in greater performance during operation of a single DMFC and PEMFC. Additionally, Pd88W12/C prepared by spray-assisted impregnation showed DMFC performance similar to Pt/C with similar particle size in the kinetic region while offering improved methanol tolerance. Pd88W12/C also showed comparable maximum power densities and activities normalized by cost in a PEMFC. Lastly, the activation of aluminum as an effective reducing agent for the wet- chemical synthesis of metallic particles by pitting corrosion was explored along with the control of particle morphology. It was found that atomic hydrogen, an intermediate, was the actual reducing agent, and a wide array of metals could be produced. The particle size and dispersion of Pd/C produced using Al was controlled using PVP and FeCl2 as stabilizers. The intermetallic Cu2Sb was similarly prepared with a 20 nm crystallite size for potential use in lithium-ion battery anodes. Lastly, it was found that the shape of Pd produced with Al as a reducing agent could be controlled to prepare 10 nm cubes enclosed by (100) facets with potentially high activity for the ORR.

Non-Noble Metal Fuel Cell Catalysts

Non-Noble Metal Fuel Cell Catalysts PDF Author: Zhongwei Chen
Publisher: John Wiley & Sons
ISBN: 3527664920
Category : Technology & Engineering
Languages : en
Pages : 448

Book Description
Written and edited by top fuel cell catalyst scientists and engineers from both industry and academia, this is the first book to provide a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal electrocatalysts, as well as their integration into fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured approach, this is a must-have for researchers working on the topic, and an equally valuable companion for newcomers to the field.

PEM Fuel Cell Electrocatalysts and Catalyst Layers

PEM Fuel Cell Electrocatalysts and Catalyst Layers PDF Author: Jiujun Zhang
Publisher: Springer
ISBN: 9781848009455
Category : Technology & Engineering
Languages : en
Pages : 1137

Book Description
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Electrocatalysis in Fuel Cells

Electrocatalysis in Fuel Cells PDF Author: Minhua Shao
Publisher: MDPI
ISBN: 3038422347
Category : Science
Languages : en
Pages : 689

Book Description
This book is a printed edition of the Special Issue "Electrocatalysis in Fuel Cells" that was published in Catalysts

Electrocatalysts for Fuel Cells and Hydrogen Evolution

Electrocatalysts for Fuel Cells and Hydrogen Evolution PDF Author: Abhijit Ray
Publisher: BoD – Books on Demand
ISBN: 1789848121
Category : Science
Languages : en
Pages : 130

Book Description
The book starts with a theoretical understanding of electrocatalysis in the framework of density functional theory followed by a vivid review of oxygen reduction reactions. A special emphasis has been placed on electrocatalysts for a proton-exchange membrane-based fuel cell where graphene with noble metal dispersion plays a significant role in electron transfer at thermodynamically favourable conditions. The latter part of the book deals with two 2D materials with high economic viability and process ability and MoS2 and WS2 for their prospects in water-splitting from renewable energy.