Author: Ole Richter
Publisher: University of Groningen
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 362
Book Description
Based upon the most advanced human-made technology on this planet, CMOS integrated circuit technology, this dissertation examines the design of hardware components and systems to establish a technological foundation for the application of future breakthroughs in the intersection of AI and neuroscience. Humans have long imagined machines, robots, and computers that learn and display intelligence akin to animals and themselves. To advance the development of these machines, specialised research in custom-built hardware designed for specific types of computation, which mirrors the structure of powerful biological nervous systems, is especially important. This dissertation is driven by the quest to harness biological and artificial neural principles to enhance the efficiency, adaptability, and intelligence of electronic neurosynaptic and neuromorphic hardware systems. It investigates the hardware design of bio-inspired neural components and their integration into more extensive scale and efficient chip architectures suitable for edge processing and near-sensor environments. Exploring all steps to the creation of a custom chip, this work selectively surveys and advances the state-of-the-art in bio-inspired mixed-signal subthreshold integrated design for neurosynaptic systems in a practical fashion. Further, it presents a novel asynchronous digital convolutional neuronal network processing pipeline integrated with a vision sensor for smart sensing. In conclusion, it sets forth a series of open challenges and future directions for the field, emphasizing the need for a robust, future-proof base for bio-inspired design and the potential of asynchronous stream processor architectures.
Synaptic Circuits and Functions in Bio-inspired Integrated Architectures
Author: Ole Richter
Publisher: University of Groningen
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 362
Book Description
Based upon the most advanced human-made technology on this planet, CMOS integrated circuit technology, this dissertation examines the design of hardware components and systems to establish a technological foundation for the application of future breakthroughs in the intersection of AI and neuroscience. Humans have long imagined machines, robots, and computers that learn and display intelligence akin to animals and themselves. To advance the development of these machines, specialised research in custom-built hardware designed for specific types of computation, which mirrors the structure of powerful biological nervous systems, is especially important. This dissertation is driven by the quest to harness biological and artificial neural principles to enhance the efficiency, adaptability, and intelligence of electronic neurosynaptic and neuromorphic hardware systems. It investigates the hardware design of bio-inspired neural components and their integration into more extensive scale and efficient chip architectures suitable for edge processing and near-sensor environments. Exploring all steps to the creation of a custom chip, this work selectively surveys and advances the state-of-the-art in bio-inspired mixed-signal subthreshold integrated design for neurosynaptic systems in a practical fashion. Further, it presents a novel asynchronous digital convolutional neuronal network processing pipeline integrated with a vision sensor for smart sensing. In conclusion, it sets forth a series of open challenges and future directions for the field, emphasizing the need for a robust, future-proof base for bio-inspired design and the potential of asynchronous stream processor architectures.
Publisher: University of Groningen
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 362
Book Description
Based upon the most advanced human-made technology on this planet, CMOS integrated circuit technology, this dissertation examines the design of hardware components and systems to establish a technological foundation for the application of future breakthroughs in the intersection of AI and neuroscience. Humans have long imagined machines, robots, and computers that learn and display intelligence akin to animals and themselves. To advance the development of these machines, specialised research in custom-built hardware designed for specific types of computation, which mirrors the structure of powerful biological nervous systems, is especially important. This dissertation is driven by the quest to harness biological and artificial neural principles to enhance the efficiency, adaptability, and intelligence of electronic neurosynaptic and neuromorphic hardware systems. It investigates the hardware design of bio-inspired neural components and their integration into more extensive scale and efficient chip architectures suitable for edge processing and near-sensor environments. Exploring all steps to the creation of a custom chip, this work selectively surveys and advances the state-of-the-art in bio-inspired mixed-signal subthreshold integrated design for neurosynaptic systems in a practical fashion. Further, it presents a novel asynchronous digital convolutional neuronal network processing pipeline integrated with a vision sensor for smart sensing. In conclusion, it sets forth a series of open challenges and future directions for the field, emphasizing the need for a robust, future-proof base for bio-inspired design and the potential of asynchronous stream processor architectures.
Synaptic Circuits and Functions in Bio-inspired Integrated Architectures
Memristive Neuromorphics: Materials, Devices, Circuits, Architectures, Algorithms and their Co-Design
Author: Huanglong Li
Publisher: Frontiers Media SA
ISBN: 2889744604
Category : Science
Languages : en
Pages : 203
Book Description
Publisher: Frontiers Media SA
ISBN: 2889744604
Category : Science
Languages : en
Pages : 203
Book Description
Brainware: Bio-inspired Architecture And Its Hardware Implementation
Author: Tsutomu Miki
Publisher: World Scientific
ISBN: 9814491594
Category : Computers
Languages : en
Pages : 245
Book Description
The human brain, the ultimate intelligent processor, can handle ambiguous and uncertain information adequately. The implementation of such a human-brain architecture and function is called “brainware”. Brainware is a candidate for the new tool that will realize a human-friendly computer society. As one of the LSI implementations of brainware, a “bio-inspired” hardware system is discussed in this book.Consisting of eight enriched versions of papers selected from IIZUKA '98, this volume provides wide coverage, from neuronal function devices to vision systems, chaotic systems, and also an effective design methodology of hierarchical large-scale neural systems inspired by neuroscience. It can serve as a reference for graduate students and researchers working in the field of brainware. It is also a source of inspiration for research towards the realization of a silicon brain.
Publisher: World Scientific
ISBN: 9814491594
Category : Computers
Languages : en
Pages : 245
Book Description
The human brain, the ultimate intelligent processor, can handle ambiguous and uncertain information adequately. The implementation of such a human-brain architecture and function is called “brainware”. Brainware is a candidate for the new tool that will realize a human-friendly computer society. As one of the LSI implementations of brainware, a “bio-inspired” hardware system is discussed in this book.Consisting of eight enriched versions of papers selected from IIZUKA '98, this volume provides wide coverage, from neuronal function devices to vision systems, chaotic systems, and also an effective design methodology of hierarchical large-scale neural systems inspired by neuroscience. It can serve as a reference for graduate students and researchers working in the field of brainware. It is also a source of inspiration for research towards the realization of a silicon brain.
Bio-Inspired Applications of Connectionism
Author: Jose Mira
Publisher: Springer Science & Business Media
ISBN: 3540422374
Category : Computers
Languages : en
Pages : 875
Book Description
This book constitutes, together with its companion LNCS 2084, the refereed proceedings of the 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001, held in Granada, Spain in June 2001. The 200 revised papers presented were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in sections on foundations of connectionism, biophysical models of neurons, structural and functional models of neurons, learning and other plasticity phenomena, complex systems dynamics, artificial intelligence and cognitive processes, methodology for nets design, nets simulation and implementation, bio-inspired systems and engineering, and other applications in a variety of fields.
Publisher: Springer Science & Business Media
ISBN: 3540422374
Category : Computers
Languages : en
Pages : 875
Book Description
This book constitutes, together with its companion LNCS 2084, the refereed proceedings of the 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001, held in Granada, Spain in June 2001. The 200 revised papers presented were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in sections on foundations of connectionism, biophysical models of neurons, structural and functional models of neurons, learning and other plasticity phenomena, complex systems dynamics, artificial intelligence and cognitive processes, methodology for nets design, nets simulation and implementation, bio-inspired systems and engineering, and other applications in a variety of fields.
Brainware
Author: Tsutomu Miki
Publisher: World Scientific
ISBN: 9812810250
Category : Computers
Languages : en
Pages : 245
Book Description
The human brain, the ultimate intelligent processor, can handle ambiguous and uncertain information adequately. The implementation of such a human-brain architecture and function is called OC brainwareOCO. Brainware is a candidate for the new tool that will realize a human-friendly computer society. As one of the LSI implementations of brainware, a OC bio-inspiredOCO hardware system is discussed in this book. Consisting of eight enriched versions of papers selected from IIZUKA ''98, this volume provides wide coverage, from neuronal function devices to vision systems, chaotic systems, and also an effective design methodology of hierarchical large-scale neural systems inspired by neuroscience. It can serve as a reference for graduate students and researchers working in the field of brainware. It is also a source of inspiration for research towards the realization of a silicon brain. Contents: Neuron MOS Transistor: The Concept and Its Application (T Shibata); Adaptive Learning Neuron Integrated Circuits Using Ferroelectric-Gate FETs (S-M Yoon et al.); An AnalogOCoDigital Merged Circuit Architecture Using PWM Techniques for Bio-Inspired Nonlinear Dynamical Systems (T Morie et al.); Application-Driven Design of Bio-Inspired Low-Power Vision Circuits and Systems (A KAnig et al.); Motion Detection with Bio-Inspired Analog MOS Circuits (H Yonezu et al.); cents MOS Cellular-Automaton Circuit for Picture Processing (M Ikebe & Y Amemiya); Semiconductor Chaos-Generating Elements of Simple Structure and Their Integration (K Hoh et al.); Computation in Single Neuron with Dendritic Trees (N Katayama et al.). Readership: Graduate students, researchers and industrialists in artificial intelligence, neural networks, machine perception, computer vision, pattern/handwriting recognition, image analysis and biocomputing."
Publisher: World Scientific
ISBN: 9812810250
Category : Computers
Languages : en
Pages : 245
Book Description
The human brain, the ultimate intelligent processor, can handle ambiguous and uncertain information adequately. The implementation of such a human-brain architecture and function is called OC brainwareOCO. Brainware is a candidate for the new tool that will realize a human-friendly computer society. As one of the LSI implementations of brainware, a OC bio-inspiredOCO hardware system is discussed in this book. Consisting of eight enriched versions of papers selected from IIZUKA ''98, this volume provides wide coverage, from neuronal function devices to vision systems, chaotic systems, and also an effective design methodology of hierarchical large-scale neural systems inspired by neuroscience. It can serve as a reference for graduate students and researchers working in the field of brainware. It is also a source of inspiration for research towards the realization of a silicon brain. Contents: Neuron MOS Transistor: The Concept and Its Application (T Shibata); Adaptive Learning Neuron Integrated Circuits Using Ferroelectric-Gate FETs (S-M Yoon et al.); An AnalogOCoDigital Merged Circuit Architecture Using PWM Techniques for Bio-Inspired Nonlinear Dynamical Systems (T Morie et al.); Application-Driven Design of Bio-Inspired Low-Power Vision Circuits and Systems (A KAnig et al.); Motion Detection with Bio-Inspired Analog MOS Circuits (H Yonezu et al.); cents MOS Cellular-Automaton Circuit for Picture Processing (M Ikebe & Y Amemiya); Semiconductor Chaos-Generating Elements of Simple Structure and Their Integration (K Hoh et al.); Computation in Single Neuron with Dendritic Trees (N Katayama et al.). Readership: Graduate students, researchers and industrialists in artificial intelligence, neural networks, machine perception, computer vision, pattern/handwriting recognition, image analysis and biocomputing."
Preparation and Properties of 2D Materials
Author: Byungjin Cho
Publisher: MDPI
ISBN: 3039362585
Category : Technology & Engineering
Languages : en
Pages : 142
Book Description
Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials
Publisher: MDPI
ISBN: 3039362585
Category : Technology & Engineering
Languages : en
Pages : 142
Book Description
Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials
Hardware for Artificial Intelligence
Author: Alexantrou Serb
Publisher: Frontiers Media SA
ISBN: 2889763986
Category : Science
Languages : en
Pages : 229
Book Description
Publisher: Frontiers Media SA
ISBN: 2889763986
Category : Science
Languages : en
Pages : 229
Book Description
Bio-inspired Computing: Theories and Applications
Author: Linqiang Pan
Publisher: Springer Nature
ISBN: 9811534152
Category : Computers
Languages : en
Pages : 737
Book Description
This two-volume set (CCIS 1159 and CCIS 1160) constitutes the proceedings of the 14th International Conference on Bio-inspired Computing: Theories and Applications, BIC-TA 2019, held in Zhengzhou, China, in November 2019. The 122 full papers presented in both volumes were selected from 197 submissions. The papers in the two volumes are organized according to the topical headings: evolutionary computation and swarm intelligence; bioinformatics and systems biology; complex networks; DNA and molecular computing; neural networks and articial intelligence.
Publisher: Springer Nature
ISBN: 9811534152
Category : Computers
Languages : en
Pages : 737
Book Description
This two-volume set (CCIS 1159 and CCIS 1160) constitutes the proceedings of the 14th International Conference on Bio-inspired Computing: Theories and Applications, BIC-TA 2019, held in Zhengzhou, China, in November 2019. The 122 full papers presented in both volumes were selected from 197 submissions. The papers in the two volumes are organized according to the topical headings: evolutionary computation and swarm intelligence; bioinformatics and systems biology; complex networks; DNA and molecular computing; neural networks and articial intelligence.
Synaptic Plasticity for Neuromorphic Systems
Author: Christian Mayr
Publisher: Frontiers Media SA
ISBN: 2889198774
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 178
Book Description
One of the most striking properties of biological systems is their ability to learn and adapt to ever changing environmental conditions, tasks and stimuli. It emerges from a number of different forms of plasticity, that change the properties of the computing substrate, mainly acting on the modification of the strength of synaptic connections that gate the flow of information across neurons. Plasticity is an essential ingredient for building artificial autonomous cognitive agents that can learn to reliably and meaningfully interact with the real world. For this reason, the neuromorphic community at large has put substantial effort in the design of different forms of plasticity and in putting them to practical use. These plasticity forms comprise, among others, Short Term Depression and Facilitation, Homeostasis, Spike Frequency Adaptation and diverse forms of Hebbian learning (e.g. Spike Timing Dependent Plasticity). This special research topic collects the most advanced developments in the design of the diverse forms of plasticity, from the single circuit to the system level, as well as their exploitation in the implementation of cognitive systems.
Publisher: Frontiers Media SA
ISBN: 2889198774
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 178
Book Description
One of the most striking properties of biological systems is their ability to learn and adapt to ever changing environmental conditions, tasks and stimuli. It emerges from a number of different forms of plasticity, that change the properties of the computing substrate, mainly acting on the modification of the strength of synaptic connections that gate the flow of information across neurons. Plasticity is an essential ingredient for building artificial autonomous cognitive agents that can learn to reliably and meaningfully interact with the real world. For this reason, the neuromorphic community at large has put substantial effort in the design of different forms of plasticity and in putting them to practical use. These plasticity forms comprise, among others, Short Term Depression and Facilitation, Homeostasis, Spike Frequency Adaptation and diverse forms of Hebbian learning (e.g. Spike Timing Dependent Plasticity). This special research topic collects the most advanced developments in the design of the diverse forms of plasticity, from the single circuit to the system level, as well as their exploitation in the implementation of cognitive systems.