Author: Maurice A. de Gosson
Publisher: Springer Science & Business Media
ISBN: 3764399929
Category : Mathematics
Languages : en
Pages : 351
Book Description
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Symplectic Methods in Harmonic Analysis and in Mathematical Physics
Symplectic Techniques in Physics
Author: Victor Guillemin
Publisher: Cambridge University Press
ISBN: 9780521389907
Category : Mathematics
Languages : en
Pages : 488
Book Description
Symplectic geometry is very useful for formulating clearly and concisely problems in classical physics and also for understanding the link between classical problems and their quantum counterparts. It is thus a subject of interest to both mathematicians and physicists, though they have approached the subject from different viewpoints. This is the first book that attempts to reconcile these approaches. The authors use the uncluttered, coordinate-free approach to symplectic geometry and classical mechanics that has been developed by mathematicians over the course of the past thirty years, but at the same time apply the apparatus to a great number of concrete problems. Some of the themes emphasized in the book include the pivotal role of completely integrable systems, the importance of symmetries, analogies between classical dynamics and optics, the importance of symplectic tools in classical variational theory, symplectic features of classical field theories, and the principle of general covariance.
Publisher: Cambridge University Press
ISBN: 9780521389907
Category : Mathematics
Languages : en
Pages : 488
Book Description
Symplectic geometry is very useful for formulating clearly and concisely problems in classical physics and also for understanding the link between classical problems and their quantum counterparts. It is thus a subject of interest to both mathematicians and physicists, though they have approached the subject from different viewpoints. This is the first book that attempts to reconcile these approaches. The authors use the uncluttered, coordinate-free approach to symplectic geometry and classical mechanics that has been developed by mathematicians over the course of the past thirty years, but at the same time apply the apparatus to a great number of concrete problems. Some of the themes emphasized in the book include the pivotal role of completely integrable systems, the importance of symmetries, analogies between classical dynamics and optics, the importance of symplectic tools in classical variational theory, symplectic features of classical field theories, and the principle of general covariance.
Born-Jordan Quantization
Author: Maurice A. de Gosson
Publisher: Springer
ISBN: 3319279025
Category : Science
Languages : en
Pages : 226
Book Description
This book presents a comprehensive mathematical study of the operators behind the Born–Jordan quantization scheme. The Schrödinger and Heisenberg pictures of quantum mechanics are equivalent only if the Born–Jordan scheme is used. Thus, Born–Jordan quantization provides the only physically consistent quantization scheme, as opposed to the Weyl quantization commonly used by physicists. In this book we develop Born–Jordan quantization from an operator-theoretical point of view, and analyze in depth the conceptual differences between the two schemes. We discuss various physically motivated approaches, in particular the Feynman-integral point of view. One important and intriguing feature of Born-Jordan quantization is that it is not one-to-one: there are infinitely many classical observables whose quantization is zero.
Publisher: Springer
ISBN: 3319279025
Category : Science
Languages : en
Pages : 226
Book Description
This book presents a comprehensive mathematical study of the operators behind the Born–Jordan quantization scheme. The Schrödinger and Heisenberg pictures of quantum mechanics are equivalent only if the Born–Jordan scheme is used. Thus, Born–Jordan quantization provides the only physically consistent quantization scheme, as opposed to the Weyl quantization commonly used by physicists. In this book we develop Born–Jordan quantization from an operator-theoretical point of view, and analyze in depth the conceptual differences between the two schemes. We discuss various physically motivated approaches, in particular the Feynman-integral point of view. One important and intriguing feature of Born-Jordan quantization is that it is not one-to-one: there are infinitely many classical observables whose quantization is zero.
Quantum Harmonic Analysis
Author: Maurice A. de Gosson
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110722771
Category : Mathematics
Languages : en
Pages : 240
Book Description
Quantum mechanics is arguably one of the most successful scientific theories ever and its applications to chemistry, optics, and information theory are innumerable. This book provides the reader with a rigorous treatment of the main mathematical tools from harmonic analysis which play an essential role in the modern formulation of quantum mechanics. This allows us at the same time to suggest some new ideas and methods, with a special focus on topics such as the Wigner phase space formalism and its applications to the theory of the density operator and its entanglement properties. This book can be used with profit by advanced undergraduate students in mathematics and physics, as well as by confirmed researchers.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110722771
Category : Mathematics
Languages : en
Pages : 240
Book Description
Quantum mechanics is arguably one of the most successful scientific theories ever and its applications to chemistry, optics, and information theory are innumerable. This book provides the reader with a rigorous treatment of the main mathematical tools from harmonic analysis which play an essential role in the modern formulation of quantum mechanics. This allows us at the same time to suggest some new ideas and methods, with a special focus on topics such as the Wigner phase space formalism and its applications to the theory of the density operator and its entanglement properties. This book can be used with profit by advanced undergraduate students in mathematics and physics, as well as by confirmed researchers.
Harmonic Analysis and Partial Differential Equations
Author: Justin Feuto
Publisher: Springer Nature
ISBN: 3031663756
Category :
Languages : en
Pages : 273
Book Description
Publisher: Springer Nature
ISBN: 3031663756
Category :
Languages : en
Pages : 273
Book Description
Quantum Harmonic Analysis
Author: Maurice A. de Gosson
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110722909
Category : Mathematics
Languages : en
Pages : 247
Book Description
Quantum mechanics is arguably one of the most successful scientific theories ever and its applications to chemistry, optics, and information theory are innumerable. This book provides the reader with a rigorous treatment of the main mathematical tools from harmonic analysis which play an essential role in the modern formulation of quantum mechanics. This allows us at the same time to suggest some new ideas and methods, with a special focus on topics such as the Wigner phase space formalism and its applications to the theory of the density operator and its entanglement properties. This book can be used with profit by advanced undergraduate students in mathematics and physics, as well as by confirmed researchers.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110722909
Category : Mathematics
Languages : en
Pages : 247
Book Description
Quantum mechanics is arguably one of the most successful scientific theories ever and its applications to chemistry, optics, and information theory are innumerable. This book provides the reader with a rigorous treatment of the main mathematical tools from harmonic analysis which play an essential role in the modern formulation of quantum mechanics. This allows us at the same time to suggest some new ideas and methods, with a special focus on topics such as the Wigner phase space formalism and its applications to the theory of the density operator and its entanglement properties. This book can be used with profit by advanced undergraduate students in mathematics and physics, as well as by confirmed researchers.
Lectures on Symplectic Geometry
Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Advances in Microlocal and Time-Frequency Analysis
Author: Paolo Boggiatto
Publisher: Springer Nature
ISBN: 3030361381
Category : Mathematics
Languages : en
Pages : 533
Book Description
The present volume gathers contributions to the conference Microlocal and Time-Frequency Analysis 2018 (MLTFA18), which was held at Torino University from the 2nd to the 6th of July 2018. The event was organized in honor of Professor Luigi Rodino on the occasion of his 70th birthday. The conference’s focus and the contents of the papers reflect Luigi’s various research interests in the course of his long and extremely prolific career at Torino University.
Publisher: Springer Nature
ISBN: 3030361381
Category : Mathematics
Languages : en
Pages : 533
Book Description
The present volume gathers contributions to the conference Microlocal and Time-Frequency Analysis 2018 (MLTFA18), which was held at Torino University from the 2nd to the 6th of July 2018. The event was organized in honor of Professor Luigi Rodino on the occasion of his 70th birthday. The conference’s focus and the contents of the papers reflect Luigi’s various research interests in the course of his long and extremely prolific career at Torino University.
Lectures on the Geometry of Quantization
Author: Sean Bates
Publisher: American Mathematical Soc.
ISBN: 9780821807989
Category : Mathematics
Languages : en
Pages : 150
Book Description
These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.
Publisher: American Mathematical Soc.
ISBN: 9780821807989
Category : Mathematics
Languages : en
Pages : 150
Book Description
These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.
Pseudo-Differential Operators, Generalized Functions and Asymptotics
Author: Shahla Molahajloo
Publisher: Springer Science & Business Media
ISBN: 3034805853
Category : Mathematics
Languages : en
Pages : 371
Book Description
This volume consists of twenty peer-reviewed papers from the special session on pseudodifferential operators and the special session on generalized functions and asymptotics at the Eighth Congress of ISAAC held at the Peoples’ Friendship University of Russia in Moscow on August 22‒27, 2011. The category of papers on pseudo-differential operators contains such topics as elliptic operators assigned to diffeomorphisms of smooth manifolds, analysis on singular manifolds with edges, heat kernels and Green functions of sub-Laplacians on the Heisenberg group and Lie groups with more complexities than but closely related to the Heisenberg group, Lp-boundedness of pseudo-differential operators on the torus, and pseudo-differential operators related to time-frequency analysis. The second group of papers contains various classes of distributions and algebras of generalized functions with applications in linear and nonlinear differential equations, initial value problems and boundary value problems, stochastic and Malliavin-type differential equations. This second group of papers are related to the third collection of papers via the setting of Colombeau-type spaces and algebras in which microlocal analysis is developed by means of techniques in asymptotics. The volume contains the synergies of the three areas treated and is a useful complement to volumes 155, 164, 172, 189, 205 and 213 published in the same series in, respectively, 2004, 2006, 2007, 2009, 2010 and 2011.
Publisher: Springer Science & Business Media
ISBN: 3034805853
Category : Mathematics
Languages : en
Pages : 371
Book Description
This volume consists of twenty peer-reviewed papers from the special session on pseudodifferential operators and the special session on generalized functions and asymptotics at the Eighth Congress of ISAAC held at the Peoples’ Friendship University of Russia in Moscow on August 22‒27, 2011. The category of papers on pseudo-differential operators contains such topics as elliptic operators assigned to diffeomorphisms of smooth manifolds, analysis on singular manifolds with edges, heat kernels and Green functions of sub-Laplacians on the Heisenberg group and Lie groups with more complexities than but closely related to the Heisenberg group, Lp-boundedness of pseudo-differential operators on the torus, and pseudo-differential operators related to time-frequency analysis. The second group of papers contains various classes of distributions and algebras of generalized functions with applications in linear and nonlinear differential equations, initial value problems and boundary value problems, stochastic and Malliavin-type differential equations. This second group of papers are related to the third collection of papers via the setting of Colombeau-type spaces and algebras in which microlocal analysis is developed by means of techniques in asymptotics. The volume contains the synergies of the three areas treated and is a useful complement to volumes 155, 164, 172, 189, 205 and 213 published in the same series in, respectively, 2004, 2006, 2007, 2009, 2010 and 2011.