Symmetries, Lie Algebras and Representations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Symmetries, Lie Algebras and Representations PDF full book. Access full book title Symmetries, Lie Algebras and Representations by Jürgen Fuchs. Download full books in PDF and EPUB format.

Symmetries, Lie Algebras and Representations

Symmetries, Lie Algebras and Representations PDF Author: Jürgen Fuchs
Publisher: Cambridge University Press
ISBN: 9780521541190
Category : Mathematics
Languages : en
Pages : 464

Book Description
This book gives an introduction to Lie algebras and their representations. Lie algebras have many applications in mathematics and physics, and any physicist or applied mathematician must nowadays be well acquainted with them.

Symmetries, Lie Algebras and Representations

Symmetries, Lie Algebras and Representations PDF Author: Jürgen Fuchs
Publisher: Cambridge University Press
ISBN: 9780521541190
Category : Mathematics
Languages : en
Pages : 464

Book Description
This book gives an introduction to Lie algebras and their representations. Lie algebras have many applications in mathematics and physics, and any physicist or applied mathematician must nowadays be well acquainted with them.

Symmetries, Lie Algebras and Representations

Symmetries, Lie Algebras and Representations PDF Author: Jürgen Fuchs
Publisher:
ISBN: 9780521560016
Category : Science
Languages : en
Pages : 438

Book Description
An introduction to Lie algebras and their applications in physics. The text's first three chapters show how Lie algebras arise naturally from symmetries of physical systems and illustrate through examples much of their general structure. Chapters four to 13 give a detailed introduction to: Lie algebras and their representations; covering the Cartan Weyl basis; simple and affine Lie algebras; real forms and Lie groups; the Weyl group; automorphisms; and loop algebras and highest weight representations. Chapters 14 to 22 cover specific further topics, such as Verma modules, Casimirs, tensor products and Clebsch Gordan coefficients, invariant tensors, subalgebras and branching rules, Young tableaux, spinors, Clifford algebras and supersymmetry, representations on function spaces, and Hopf algebras and representation rings. A detailed reference list is provided, and many exercises and examples throughout the book illustrate the use of Lie algebras in real physical problems. The text is written at a level accessible to graduate students, but should also provide a comprehensive reference for researchers.

Symmetry, Representations, and Invariants

Symmetry, Representations, and Invariants PDF Author: Roe Goodman
Publisher: Springer Science & Business Media
ISBN: 0387798528
Category : Mathematics
Languages : en
Pages : 731

Book Description
Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.

Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications

Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications PDF Author: Alexey P Isaev
Publisher: World Scientific
ISBN: 9811217424
Category : Science
Languages : en
Pages : 615

Book Description
This book is a sequel to the book by the same authors entitled Theory of Groups and Symmetries: Finite Groups, Lie Groups, and Lie Algebras.The presentation begins with the Dirac notation, which is illustrated by boson and fermion oscillator algebras and also Grassmann algebra. Then detailed account of finite-dimensional representations of groups SL(2, C) and SU(2) and their Lie algebras is presented. The general theory of finite-dimensional irreducible representations of simple Lie algebras based on the construction of highest weight representations is given. The classification of all finite-dimensional irreducible representations of the Lie algebras of the classical series sℓ(n, C), so(n, C) and sp(2r, C) is exposed.Finite-dimensional irreducible representations of linear groups SL(N, C) and their compact forms SU(N) are constructed on the basis of the Schur-Weyl duality. A special role here is played by the theory of representations of the symmetric group algebra C[Sr] (Schur-Frobenius theory, Okounkov-Vershik approach), based on combinatorics of Young diagrams and Young tableaux. Similar construction is given for pseudo-orthogonal groups O(p, q) and SO(p, q), including Lorentz groups O(1, N-1) and SO(1, N-1), and their Lie algebras, as well as symplectic groups Sp(p, q). The representation theory of Brauer algebra (centralizer algebra of SO(p, q) and Sp(p, q) groups in tensor representations) is discussed.Finally, the covering groups Spin(p, q) for pseudo-orthogonal groups SO↑(p, q) are studied. For this purpose, Clifford algebras in spaces Rp, q are introduced and representations of these algebras are discussed.

Semi-Simple Lie Algebras and Their Representations

Semi-Simple Lie Algebras and Their Representations PDF Author: Robert N. Cahn
Publisher: Courier Corporation
ISBN: 0486150313
Category : Mathematics
Languages : en
Pages : 180

Book Description
Designed to acquaint students of particle physiME already familiar with SU(2) and SU(3) with techniques applicable to all simple Lie algebras, this text is especially suited to the study of grand unification theories. Author Robert N. Cahn, who is affiliated with the Lawrence Berkeley National Laboratory in Berkeley, California, has provided a new preface for this edition. Subjects include the killing form, the structure of simple Lie algebras and their representations, simple roots and the Cartan matrix, the classical Lie algebras, and the exceptional Lie algebras. Additional topiME include Casimir operators and Freudenthal's formula, the Weyl group, Weyl's dimension formula, reducing product representations, subalgebras, and branching rules. 1984 edition.

Groups and Symmetries

Groups and Symmetries PDF Author: Yvette Kosmann-Schwarzbach
Publisher: Springer Science & Business Media
ISBN: 0387788662
Category : Mathematics
Languages : en
Pages : 207

Book Description
- Combines material from many areas of mathematics, including algebra, geometry, and analysis, so students see connections between these areas - Applies material to physics so students appreciate the applications of abstract mathematics - Assumes only linear algebra and calculus, making an advanced subject accessible to undergraduates - Includes 142 exercises, many with hints or complete solutions, so text may be used in the classroom or for self study

Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra

Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra PDF Author: W.-H. Steeb
Publisher: World Scientific
ISBN: 9789810228910
Category : Science
Languages : en
Pages : 380

Book Description
This book is a comprehensive introduction to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. It is suitable for students and research workers whose main interest lies in finding solutions to differential equations. It therefore caters for readers primarily interested in applied mathematics and physics rather than pure mathematics.The book provides an application-orientated text that is reasonably self-contained. A large number of worked examples have been included to help readers working independently of a teacher. The advance of algebraic computation has made it possible to write programs for the tedious calculations in this research field, and thus the book also makes a survey of computer algebra packages.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras PDF Author: Alexander A. Kirillov
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237

Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Lie Groups, Lie Algebras, and Representations

Lie Groups, Lie Algebras, and Representations PDF Author: Brian C. Hall
Publisher: Springer Science & Business Media
ISBN: 9780387401225
Category : Mathematics
Languages : en
Pages : 376

Book Description
This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case: a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time.

Theory Of Groups And Symmetries: Finite Groups, Lie Groups, And Lie Algebras

Theory Of Groups And Symmetries: Finite Groups, Lie Groups, And Lie Algebras PDF Author: Alexey P Isaev
Publisher: World Scientific
ISBN: 9813236876
Category : Science
Languages : en
Pages : 475

Book Description
The book presents the main approaches in study of algebraic structures of symmetries in models of theoretical and mathematical physics, namely groups and Lie algebras and their deformations. It covers the commonly encountered quantum groups (including Yangians). The second main goal of the book is to present a differential geometry of coset spaces that is actively used in investigations of models of quantum field theory, gravity and statistical physics. The third goal is to explain the main ideas about the theory of conformal symmetries, which is the basis of the AdS/CFT correspondence.The theory of groups and symmetries is an important part of theoretical physics. In elementary particle physics, cosmology and related fields, the key role is played by Lie groups and algebras corresponding to continuous symmetries. For example, relativistic physics is based on the Lorentz and Poincare groups, and the modern theory of elementary particles — the Standard Model — is based on gauge (local) symmetry with the gauge group SU(3) x SU(2) x U(1). This book presents constructions and results of a general nature, along with numerous concrete examples that have direct applications in modern theoretical and mathematical physics.