Author: Marko M. Melander
Publisher: John Wiley & Sons
ISBN: 1119605636
Category : Science
Languages : en
Pages : 372
Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.
Atomic-Scale Modelling of Electrochemical Systems
Author: Marko M. Melander
Publisher: John Wiley & Sons
ISBN: 1119605636
Category : Science
Languages : en
Pages : 372
Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.
Publisher: John Wiley & Sons
ISBN: 1119605636
Category : Science
Languages : en
Pages : 372
Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.
SURFACE ELECTRON TRANSFER PROCESSES.
Elementary Processes in Excitations and Reactions on Solid Surfaces
Author: Ayao Okiji
Publisher: Springer Science & Business Media
ISBN: 3642611850
Category : Science
Languages : en
Pages : 250
Book Description
Elementary Processes in Excitations and Reactions on Solid Surfaces explores the fundamental nature of dynamics on solid surfaces. Attempts are made to reveal various aspects of elementary processes in excitations and reactions on solid surfaces by recent theoretical and experimental developments of the subjects such as molecular beams interacting with surfaces, ion beam scattering, laser-induced dynamical processes, electronically induced dynamical processes, and optical properties of solid surfaces. This volume is devided into three parts. Part I is concerned mainly with the rich reaction dynamics on potential-energy surfaces. Part II is devoted to the interplay of excitations. In Part III, new and rapidly developing methods are introduced.
Publisher: Springer Science & Business Media
ISBN: 3642611850
Category : Science
Languages : en
Pages : 250
Book Description
Elementary Processes in Excitations and Reactions on Solid Surfaces explores the fundamental nature of dynamics on solid surfaces. Attempts are made to reveal various aspects of elementary processes in excitations and reactions on solid surfaces by recent theoretical and experimental developments of the subjects such as molecular beams interacting with surfaces, ion beam scattering, laser-induced dynamical processes, electronically induced dynamical processes, and optical properties of solid surfaces. This volume is devided into three parts. Part I is concerned mainly with the rich reaction dynamics on potential-energy surfaces. Part II is devoted to the interplay of excitations. In Part III, new and rapidly developing methods are introduced.
Dynamical Processes and Ordering on Solid Surfaces
Author: A. Yoshimori
Publisher: Springer Science & Business Media
ISBN: 3642824234
Category : Technology & Engineering
Languages : en
Pages : 205
Book Description
This volume is the proceedings of the Seventh Taniguchi International Sympo sium on the Theory of Condensed Matter. The symposium was held for five days from September 10 to 14, 1984 at Kashikojima, Mie, Japan. Dynamical proces ses and ordering on solid surfaces are the subjects of the symposium. About twenty participants stayed together at Shima Kanko Hotel, the symposium site, during the period. The intense and productive discussion in the bright sea s ide atmosphere of Kashi koj ima is bel i eved to have been impress i ve to all the participants. Dynamical processes on solid surfaces are the target of recent theoreti cal efforts in surface physics. Even if some of them are still in their in fant stage, important aspects begin to appear and vital concepts start to shape themselves. Some topics in the symposium were the energy transfer re lated with internal degrees of freedom of molecules, attempts to go beyond the trajectory approximati on, charge transfer and energy transfer between particles and solid surfaces, and related fundamental problems like adiaba tic potentials and electronic structures. In particular, really actively di scussed was the time-dependent Newns-Anderson model wi thout and wi th the intraatomic Coulomb interaction and sometimes with the interaction to the surface plasmons or phonons. Surface effects on the optical processes were discussed with great interest, such as the ABC-related problems of exciton polaritons and rare gas adsorbates on metal surfaces.
Publisher: Springer Science & Business Media
ISBN: 3642824234
Category : Technology & Engineering
Languages : en
Pages : 205
Book Description
This volume is the proceedings of the Seventh Taniguchi International Sympo sium on the Theory of Condensed Matter. The symposium was held for five days from September 10 to 14, 1984 at Kashikojima, Mie, Japan. Dynamical proces ses and ordering on solid surfaces are the subjects of the symposium. About twenty participants stayed together at Shima Kanko Hotel, the symposium site, during the period. The intense and productive discussion in the bright sea s ide atmosphere of Kashi koj ima is bel i eved to have been impress i ve to all the participants. Dynamical processes on solid surfaces are the target of recent theoreti cal efforts in surface physics. Even if some of them are still in their in fant stage, important aspects begin to appear and vital concepts start to shape themselves. Some topics in the symposium were the energy transfer re lated with internal degrees of freedom of molecules, attempts to go beyond the trajectory approximati on, charge transfer and energy transfer between particles and solid surfaces, and related fundamental problems like adiaba tic potentials and electronic structures. In particular, really actively di scussed was the time-dependent Newns-Anderson model wi thout and wi th the intraatomic Coulomb interaction and sometimes with the interaction to the surface plasmons or phonons. Surface effects on the optical processes were discussed with great interest, such as the ABC-related problems of exciton polaritons and rare gas adsorbates on metal surfaces.
Dynamics at Surfaces: Understanding Energy Dissipation and Physicochemical Processes at the Atomic and Molecular Level
Author: Marco Sacchi
Publisher: Frontiers Media SA
ISBN: 2832548466
Category : Science
Languages : en
Pages : 120
Book Description
Energy release to solid interfaces following chemical reactions is ubiquitous in a vast range of phenomena. Energy dissipation and dynamical disorder (surface entropy), surface friction and molecular diffusion control the rates of heterogeneous catalytic reactions, the efficiency of novel technology, lubrication as well as materials growth including self-assembly and nano-structures. Yet we understand little about the underlying nature of these mechanisms. Fundamentally, energy dissipation including interactions with phonons and electron-hole pairs determines the lifetime of molecular vibrations and rotations as well as the decoherence rate of quantum states. These processes form a central point for many aspects in physical chemistry, are embedded in the mechanisms that control surface dynamical processes and are critical factors in catalysis. They are equally relevant for physicochemical processes in the Earth's atmosphere and astrochemistry occurring on cosmic dust grains.
Publisher: Frontiers Media SA
ISBN: 2832548466
Category : Science
Languages : en
Pages : 120
Book Description
Energy release to solid interfaces following chemical reactions is ubiquitous in a vast range of phenomena. Energy dissipation and dynamical disorder (surface entropy), surface friction and molecular diffusion control the rates of heterogeneous catalytic reactions, the efficiency of novel technology, lubrication as well as materials growth including self-assembly and nano-structures. Yet we understand little about the underlying nature of these mechanisms. Fundamentally, energy dissipation including interactions with phonons and electron-hole pairs determines the lifetime of molecular vibrations and rotations as well as the decoherence rate of quantum states. These processes form a central point for many aspects in physical chemistry, are embedded in the mechanisms that control surface dynamical processes and are critical factors in catalysis. They are equally relevant for physicochemical processes in the Earth's atmosphere and astrochemistry occurring on cosmic dust grains.
Electronic Processes At Solid Surfaces
Author: E Ilisca
Publisher: World Scientific
ISBN: 9814501417
Category : Science
Languages : en
Pages : 371
Book Description
The subject of surface physics has now grown to become an exciting interdisciplinary field of research with important practical applications.The purpose of this book is to provide a guided tour of some recent advances, key research issues and approaches in electronic processes at solid surfaces.Apart from a few structural studies, selected topics have been chosen to illustrate the dynamical response of the solid surface to external probes, with the main emphasis on electron transfer phenomena.
Publisher: World Scientific
ISBN: 9814501417
Category : Science
Languages : en
Pages : 371
Book Description
The subject of surface physics has now grown to become an exciting interdisciplinary field of research with important practical applications.The purpose of this book is to provide a guided tour of some recent advances, key research issues and approaches in electronic processes at solid surfaces.Apart from a few structural studies, selected topics have been chosen to illustrate the dynamical response of the solid surface to external probes, with the main emphasis on electron transfer phenomena.
Electron Transfer in Nanomaterials
Author: Garry Rumbles
Publisher: The Electrochemical Society
ISBN: 9781566774352
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Publisher: The Electrochemical Society
ISBN: 9781566774352
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Methods of Surface Analysis
Author: A.W. Czanderna
Publisher: Elsevier
ISBN: 0444596453
Category : Science
Languages : en
Pages : 496
Book Description
Methods of Surface Analysis deals with the determination of the composition of surfaces and the identification of species attached to the surface. The text applies methods of surface analysis to obtain a composition depth profile after various stages of ion etching or sputtering. The composition at the solid—solid interface is revealed by systematically removing atomic planes until the interface of interest is reached, in which the investigator can then determine its composition. The book reviews the effect of ion etching on the results obtained by any method of surface analysis including the effect of the rate of etching, incident energy of the bombarding ion, the properties of the solid, the effect of the ion etching on generating an output signal of electrons, ions, or neutrals. The text also describes the effect of the residual gases in the vacuum environment. The book considers the influence of the sample geometry, of the type (metal, insulator, semiconductor, organic), and of the atomic number can have on surface analysis. The text describes in detail low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectroscopy, and infrared reflection-absorption spectroscopy. The book can prove useful for researchers, technicians, and scientists whose works involve organic chemistry, analytical chemistry, and other related fields of chemistry, such as physical chemistry or inorganic chemistry.
Publisher: Elsevier
ISBN: 0444596453
Category : Science
Languages : en
Pages : 496
Book Description
Methods of Surface Analysis deals with the determination of the composition of surfaces and the identification of species attached to the surface. The text applies methods of surface analysis to obtain a composition depth profile after various stages of ion etching or sputtering. The composition at the solid—solid interface is revealed by systematically removing atomic planes until the interface of interest is reached, in which the investigator can then determine its composition. The book reviews the effect of ion etching on the results obtained by any method of surface analysis including the effect of the rate of etching, incident energy of the bombarding ion, the properties of the solid, the effect of the ion etching on generating an output signal of electrons, ions, or neutrals. The text also describes the effect of the residual gases in the vacuum environment. The book considers the influence of the sample geometry, of the type (metal, insulator, semiconductor, organic), and of the atomic number can have on surface analysis. The text describes in detail low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectroscopy, and infrared reflection-absorption spectroscopy. The book can prove useful for researchers, technicians, and scientists whose works involve organic chemistry, analytical chemistry, and other related fields of chemistry, such as physical chemistry or inorganic chemistry.
Dynamic Processes on Solid Surfaces
Author: Kenzi Tamaru
Publisher: Springer Science & Business Media
ISBN: 1489916369
Category : Science
Languages : en
Pages : 365
Book Description
When we see a jumbo jet at the airport, we sometimes wonder how such a huge, heavy plane can fly high in the sky. To the extent that we think in a static way, it is certainly not understandable. In such a manner, dynamics yields behavior quite different from statics. When we want to prepare an iron nitride, for example, one of the most orthodox ways is to put iron in a nitrogen atmosphere under pressures higher than the dissociation pressure of the iron nitride at temperatures sufficiently high to let the nitrogen penetrate into the bulk iron. This is the way thermodynamics tells us to proceed, which requires an elaborate, expensive high-pressure apparatus, sophisticated techniques, and great efforts. However, if we flow ammonia over the iron, even under low pressures, we can easily prepare the nitride-provided the hydrogen pressure is sufficiently low. Since the nitrogen desorption rate is the determining step of the ammonia decomposition on the iron surface, the virtual pressure of nitrogen at the surface can reach an extremely high level (as is generally accepted) because, in such a dynamic system, the driving force of the ammonia decomposition reaction pushes the nitrogen into the bulk iron to form the nitride. Thus, dynamics is an approach considerably different from statics.
Publisher: Springer Science & Business Media
ISBN: 1489916369
Category : Science
Languages : en
Pages : 365
Book Description
When we see a jumbo jet at the airport, we sometimes wonder how such a huge, heavy plane can fly high in the sky. To the extent that we think in a static way, it is certainly not understandable. In such a manner, dynamics yields behavior quite different from statics. When we want to prepare an iron nitride, for example, one of the most orthodox ways is to put iron in a nitrogen atmosphere under pressures higher than the dissociation pressure of the iron nitride at temperatures sufficiently high to let the nitrogen penetrate into the bulk iron. This is the way thermodynamics tells us to proceed, which requires an elaborate, expensive high-pressure apparatus, sophisticated techniques, and great efforts. However, if we flow ammonia over the iron, even under low pressures, we can easily prepare the nitride-provided the hydrogen pressure is sufficiently low. Since the nitrogen desorption rate is the determining step of the ammonia decomposition on the iron surface, the virtual pressure of nitrogen at the surface can reach an extremely high level (as is generally accepted) because, in such a dynamic system, the driving force of the ammonia decomposition reaction pushes the nitrogen into the bulk iron to form the nitride. Thus, dynamics is an approach considerably different from statics.
Encyclopedia of Surface and Colloid Science
Author: P. Somasundaran
Publisher: CRC Press
ISBN: 9780849396069
Category : Science
Languages : en
Pages : 1000
Book Description
Publisher: CRC Press
ISBN: 9780849396069
Category : Science
Languages : en
Pages : 1000
Book Description