Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2022 State-of-Technology Cases PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2022 State-of-Technology Cases PDF full book. Access full book title Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2022 State-of-Technology Cases by . Download full books in PDF and EPUB format.

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2022 State-of-Technology Cases

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2022 State-of-Technology Cases PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The Department of Energy's (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower through public and private partnerships. BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels. There are two general types of TEAs: A design case outlines a target case (future projection) for a particular biofuel pathway. It informs R&D priorities by identifying areas in need of improvement, tracks sustainability impact of R&D, and provides goals and benchmarks against which technology progress is assessed. A state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual results at current experimental scales relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available. In addition to developing a TEA for a pathway of interest, BETO also performs a supply chain sustainability analysis (SCSA). The SCSA takes the life-cycle analysis approach that BETO has been supporting for over 20 years. It enables BETO to identify energy consumption, environmental, and sustainability issues that may be associated with biofuel production. Approaches to mitigating these issues can then be developed. Additionally, the SCSA allows for comparison of energy and environmental impacts across biofuel pathways in BETO's research and development portfolio. This technical report describes the SCSAs for the production of renewable hydrocarbon transportation fuels via a range of conversion technologies in the 2022 SOTs: (1) renewable hydrocarbon fuels via hydrothermal liquefaction (HTL) of wet sludge from a wastewater treatment plant; (2) renewable hydrocarbon fuels via biochemical conversion of herbaceous lignocellulosic biomass; (3) renewable hydrocarbon fuels via HTL of an algae/woody biomass blend; and (4) renewable hydrocarbon fuels via combined algae processing (CAP).

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2022 State-of-Technology Cases

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2022 State-of-Technology Cases PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The Department of Energy's (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower through public and private partnerships. BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels. There are two general types of TEAs: A design case outlines a target case (future projection) for a particular biofuel pathway. It informs R&D priorities by identifying areas in need of improvement, tracks sustainability impact of R&D, and provides goals and benchmarks against which technology progress is assessed. A state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual results at current experimental scales relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available. In addition to developing a TEA for a pathway of interest, BETO also performs a supply chain sustainability analysis (SCSA). The SCSA takes the life-cycle analysis approach that BETO has been supporting for over 20 years. It enables BETO to identify energy consumption, environmental, and sustainability issues that may be associated with biofuel production. Approaches to mitigating these issues can then be developed. Additionally, the SCSA allows for comparison of energy and environmental impacts across biofuel pathways in BETO's research and development portfolio. This technical report describes the SCSAs for the production of renewable hydrocarbon transportation fuels via a range of conversion technologies in the 2022 SOTs: (1) renewable hydrocarbon fuels via hydrothermal liquefaction (HTL) of wet sludge from a wastewater treatment plant; (2) renewable hydrocarbon fuels via biochemical conversion of herbaceous lignocellulosic biomass; (3) renewable hydrocarbon fuels via HTL of an algae/woody biomass blend; and (4) renewable hydrocarbon fuels via combined algae processing (CAP).

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2018 State-of-Technology Cases and Design Cases

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2018 State-of-Technology Cases and Design Cases PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
This technical report describes the SCSAs for the production of renewable hydrocarbon transportation fuels via a range of conversion technologies: (1) renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of woody lignocellulosic biomass (note that the IDL pathway in this SCSA represents the syngas conversion design in the 2018 SOT and 2022 design cases [Tan et al., 2018]); (2) renewable gasoline (RG) and diesel (RD) blendstocks via ex situ catalytic fast pyrolysis of woody lignocellulosic biomass; (3) RD via hydrothermal liquefaction (HTL) of wet sludge from a wastewater treatment plant; (4) renewable hydrocarbon fuels via biochemical conversion of herbaceous lignocellulosic biomass; (5) renewable diesel via HTL of a blend of algae and woody biomass; and (6) renewable diesel via combined algae processing (CAP). This technical report focuses on the environmental performance of these six biofuel production pathways in their 2018 SOT cases, as well as in their design cases (future target projections). The results of these renewable hydrocarbon fuel pathways in these SCSA analyses update those for the respective 2015 and 2016 SOT cases (Edward Frank et al. 2016; Hao Cai et al. 2016, 2017; Cai et al. 2018) in the case of IDL, algae CAP, and biochemical conversion pathways. They also provide an opportunity to examine the impact of technology improvements in both biomass feedstock production and biofuel production that have been achieved in 2018 SOTs on the sustainability performance of these renewable transportation fuels, and they reflect updates to Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET[R]) model, which was released in October 2018 (Wang et al. 2018). These GREET updates include production of natural gas, electricity, and petroleum-based fuels that can influence biofuels' supply chain greenhouse gas (GHG) (CO2, CH4, and N2O) emissions, water consumption and air pollutant emissions. GHG emissions, water consumption, and 2 nitrogen oxides (NOx) emissions are the main sustainability metrics assessed in this analysis. In this analysis, we define water consumption as the amount of water withdrawn from a freshwater source that is not returned (or returnable) to a freshwater source at the same level of quality. Life-cycle fossil energy consumption and net energy balance, which is the life-cycle fossil energy consumption deducted from the renewable biofuel energy produced, are also assessed.

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2021 State-of-Technology Cases

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2021 State-of-Technology Cases PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower through public and private partnerships (U.S. Department of Energy, 2016). BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels. There are two general types of TEAs: A design case is a TEA that outlines a target case (future projection) for a particular biofuel pathway. It enables identification of data gaps and research and development needs, and provides goals and benchmarks against which technology progress is assessed. A state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual results at current experimental scales, relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available. In addition to developing a TEA for a pathway of interest, BETO also performs a supply chain sustainability analysis (SCSA). The SCSA takes the life-cycle analysis approach that BETO has been supporting for about 20 years. It enables BETO to identify energy consumption, environmental, and sustainability issues that may be associated with biofuel production. Approaches to mitigate these issues can then be developed. Additionally, the SCSA allows for comparison of energy and environmental impacts across biofuel pathways in BETO's research and development portfolio.

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2020 State-of-Technology Cases

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2020 State-of-Technology Cases PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower through public and private partnerships (U.S. Department of Energy, 2016). BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels. There are two general types of TEAs: A design case is a TEA that outlines a target case (future projection) for a particular biofuel pathway. It enables identification of data gaps and research and development needs, and provides goals and benchmarks against which technology progress is assessed. A state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual results at current experimental scales, relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available. In addition to developing a TEA for a pathway of interest, BETO also performs a supply chain sustainability analysis (SCSA). The SCSA takes the life-cycle analysis approach that BETO has been supporting for about 20 years. It enables BETO to identify energy consumption, environmental, and sustainability issues that may be associated with biofuel production. Approaches to mitigate these issues can then be developed. Additionally, the SCSA allows for comparison of energy and environmental impacts across biofuel pathways in BETO's research and development portfolio.

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels Via Indirect Liquefaction, Fast Pyrolysis, and Hydrothermal Liquefaction

Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels Via Indirect Liquefaction, Fast Pyrolysis, and Hydrothermal Liquefaction PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 36

Book Description
The Department of Energy's (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2016). BETO and its national laboratory teams conduct in-depth technoeconomic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels, and life-cycle analysis of overall system sustainability.

Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading

Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The Department of Energy's Bioenergy Technology Office (BETO) collaborates with a wide range of institutions towards the development and deployment of biofuels and bioproducts. To facilitate this effort, BETO and its partner national laboratories develop detailed techno-economic assessments (TEA) of biofuel production technologies as part of the development of design cases and state of technology (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available.

Renewable Fuel Standard

Renewable Fuel Standard PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309187516
Category : Technology & Engineering
Languages : en
Pages : 416

Book Description
In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.

Algal Biomass Conversion to Fuels via Combined Algae Processing (CAP): 2022 State of Technology and Future Research

Algal Biomass Conversion to Fuels via Combined Algae Processing (CAP): 2022 State of Technology and Future Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The annual State of Technology (SOT) assessment is an essential activity for platform research conducted under the Bioenergy Technologies Office (BETO). It allows for the impact of research progress (both directly achieved in-house at NREL and furnished by partner organizations) to be quantified in terms of economic improvements in the overall biofuel production process for a particular biomass processing pathway, whether based on terrestrial or algal biomass feedstocks. As such, initial benchmarks can be established for currently demonstrated performance, and progress can be tracked toward out-year goals to ultimately demonstrate economically viable biofuel technologies. NREL's algae SOT benchmarking efforts focus both on front-end algal biomass production and separately on back-end conversion to fuels through NREL's "combined algae processing" (CAP) pathway. The production model is based on outdoor long-term cultivation data, enabled by comprehensive algal biomass production trials conducted under Development of Integrated Screening, Cultivar Optimization, and Verification Research (DISCOVR) consortium efforts and driven by data furnished by Arizona State University's (ASU's) Arizona Center for Algae Technology and Innovation (AzCATI) test bed site. The CAP model is primarily based on experimental efforts conducted under NREL research and development projects, with some process parameters provided by partner organizations. Assumptions regarding the wet storage of algae use data provided by Idaho National Laboratory (INL), while parts of the polyurethane production process leverage BETO-funded research from collaborators at Algenesis and the University of California, San Diego (UCSD). This report focuses on back-end conversion of algal biomass through the CAP pathway, highlighting the 2022 updates to minimum fuel selling price (MFSP). This update incorporates improvements to fermentation performance for two biological pathways through carboxylic acid and 2,3-butanediol (BDO) intermediates, as demonstrated through parallel research on the biochemical conversion of corn stover. Improvements are applied to the glucose fraction of the biomass only, while parameters regarding the conversion of the mannose fraction (not a significant component in corn stover) are maintained consistently with prior CAP SOTs. Additional parameters are also updated to reflect the most current understanding of each pathway, including an increase in the catalyst loading requirement in the ketonization step of the acids pathway and a decrease in the fermentation productivity in the BDO pathway. Additionally, the biomass feedstock costs (minimum biomass selling price [MBSP]), yields, and seasonal variability from the upstream cultivation SOT model were also incorporated into downstream Aspen Plus CAP models.

Sustainable Development of Algal Biofuels in the United States

Sustainable Development of Algal Biofuels in the United States PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309260329
Category : Science
Languages : en
Pages : 247

Book Description
Biofuels made from algae are gaining attention as a domestic source of renewable fuel. However, with current technologies, scaling up production of algal biofuels to meet even 5 percent of U.S. transportation fuel needs could create unsustainable demands for energy, water, and nutrient resources. Continued research and development could yield innovations to address these challenges, but determining if algal biofuel is a viable fuel alternative will involve comparing the environmental, economic and social impacts of algal biofuel production and use to those associated with petroleum-based fuels and other fuel sources. Sustainable Development of Algal Biofuels was produced at the request of the U.S. Department of Energy.

Algal Biomass Conversion to Fuels via Combined Algae Processing (CAP): 2021 State of Technology and Future Research

Algal Biomass Conversion to Fuels via Combined Algae Processing (CAP): 2021 State of Technology and Future Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The annual State of Technology (SOT) assessment is an essential activity for platform research conducted under the Bioenergy Technologies Office. It allows for the impact of research progress to be quantified in terms of economic improvements in the overall biofuel production process for a particular biomass processing pathway, whether based on terrestrial or algal biomass feedstocks. As such, initial benchmarks can be established for currently demonstrated performance, and progress can be tracked towards out-year goals to ultimately demonstrate economically viable biofuel technologies. NREL's algae state of technology benchmarking efforts focus both on front-end algal biomass production and separately on back-end conversion to fuels through NREL's "combined algae processing" (CAP) pathway. The production model is based on outdoor long-term cultivation data, enabled by comprehensive algal biomass production trials conducted under the Development of Integrated Screening, Cultivar Optimization, and Verification Research consortium (DISCOVR) efforts, driven by data furnished by Arizona State University (ASU) at the Arizona Center for Algae Technology and Innovation (AzCATI) testbed site. The CAP model is based on experimental efforts conducted under NREL research and development projects. This report focuses on back-end conversion of algal biomass through the CAP pathway, highlighting the 2021 updates to minimum fuel selling price (MFSP). This update maintains an important recent inclusion of polyurethane (PU) previously incorporated in the 2020 SOT as a value-added coproduct. Relative to the 2020 SOT case, this indicates a minimal increase of $0.10-$0.14/GGE (roughly 2%) for both the acids and BDO pathways, attributed to minimal increases in upstream algal biomass costs from slightly lower demonstrated cultivation productivities in the 2021 SOT.