Author:
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 182
Book Description
NASA Langley Scientific and Technical Information Output: 1999
30th AIAA Fluid Dynamics Conference
38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit: 02-3850 - 02-3899
AIAA Journal
Author: American Institute of Aeronautics and Astronautics
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1184
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1184
Book Description
30th International Symposium on Shock Waves 1
Author: Gabi Ben-Dor
Publisher: Springer
ISBN: 331946213X
Category : Technology & Engineering
Languages : en
Pages : 746
Book Description
These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference for the participants of the ISSW30 and anyone interested in these fields.
Publisher: Springer
ISBN: 331946213X
Category : Technology & Engineering
Languages : en
Pages : 746
Book Description
These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference for the participants of the ISSW30 and anyone interested in these fields.
Scientific and Technical Aerospace Reports
A Supersonic Argon/Air Coaxial Jet Experiment for Computational Fluid Dynamics Code Validation
Author: National Aeronaut Administration (Nasa)
Publisher:
ISBN:
Category :
Languages : en
Pages : 52
Book Description
A non-reacting experiment is described in which data has been acquired for the validation of CFD codes used to design high-speed air-breathing engines. A coaxial jet-nozzle has been designed to produce pressure-matched exit flows of Mach 1.8 at 1 atm in both a center jet of argon and a coflow jet of air, creating a supersonic, incompressible mixing layer. The flowfield was surveyed using total temperature, gas composition, and Pitot probes. The data set was compared to CFD code predictions made using Vulcan, a structured grid Navier-Stokes code, as well as to data from a previous experiment in which a He-O2 mixture was used instead of argon in the center jet of the same coaxial jet assembly. Comparison of experimental data from the argon flowfield and its computational prediction shows that the CFD produces an accurate solution for most of the measured flowfield. However, the CFD prediction deviates from the experimental data in the region downstream of x/D = 4, underpredicting the mixing-layer growth rate. Clifton, Chandler W. and Cutler, Andrew D. Langley Research Center NASA/CR-2007-214866 COMPUTATIONAL FLUID DYNAMICS; SUPERSONIC SPEED; AIR BREATHING ENGINES; MIXING LAYERS (FLUIDS); FLOW DISTRIBUTION; GAS COMPOSITION; ARGON; AIR JETS; TEMPERATURE PROBES; OXYGEN
Publisher:
ISBN:
Category :
Languages : en
Pages : 52
Book Description
A non-reacting experiment is described in which data has been acquired for the validation of CFD codes used to design high-speed air-breathing engines. A coaxial jet-nozzle has been designed to produce pressure-matched exit flows of Mach 1.8 at 1 atm in both a center jet of argon and a coflow jet of air, creating a supersonic, incompressible mixing layer. The flowfield was surveyed using total temperature, gas composition, and Pitot probes. The data set was compared to CFD code predictions made using Vulcan, a structured grid Navier-Stokes code, as well as to data from a previous experiment in which a He-O2 mixture was used instead of argon in the center jet of the same coaxial jet assembly. Comparison of experimental data from the argon flowfield and its computational prediction shows that the CFD produces an accurate solution for most of the measured flowfield. However, the CFD prediction deviates from the experimental data in the region downstream of x/D = 4, underpredicting the mixing-layer growth rate. Clifton, Chandler W. and Cutler, Andrew D. Langley Research Center NASA/CR-2007-214866 COMPUTATIONAL FLUID DYNAMICS; SUPERSONIC SPEED; AIR BREATHING ENGINES; MIXING LAYERS (FLUIDS); FLOW DISTRIBUTION; GAS COMPOSITION; ARGON; AIR JETS; TEMPERATURE PROBES; OXYGEN
Advanced Turbulent Combustion Physics and Applications
Author: N. Swaminathan
Publisher: Cambridge University Press
ISBN: 1108497969
Category : Science
Languages : en
Pages : 485
Book Description
Explore a thorough overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application.
Publisher: Cambridge University Press
ISBN: 1108497969
Category : Science
Languages : en
Pages : 485
Book Description
Explore a thorough overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application.