Author: Amulya Laskar
Publisher: Elsevier
ISBN: 0323142931
Category : Science
Languages : en
Pages : 731
Book Description
Superionic Solids and Solid Electrolytes: Recent Trends describes the fundamental aspects, unique properties, and potential applications of superionic solids and solid electrolytes. These materials significantly contribute to the development of the solid state ionics technology. This book is divided into 17 chapters, and begins with an overview of various materials, such as glasses, heterogeneous or dispersed phase conductors, proton conductors, Nasicon, and fluorites. These topics are followed by a discussion on the problems related with entropy effects, subsurface space charge, and defect formation parameters. Significant chapters deal with the phenomenological, fractal, molecular dynamics, fluctuations, and correlations in superionic solid and solid electrolyte materials. A chapter tackles the solid state battery applications of solid electrolytes. This text ends with a chapter on the prediction of the potentials of activity in superionics. This book will be of value to graduate students and researchers who are interested in the solid state ionics technology.
Superionic Solids And Solid Electrolytes Recent Trends
Author: Amulya Laskar
Publisher: Elsevier
ISBN: 0323142931
Category : Science
Languages : en
Pages : 731
Book Description
Superionic Solids and Solid Electrolytes: Recent Trends describes the fundamental aspects, unique properties, and potential applications of superionic solids and solid electrolytes. These materials significantly contribute to the development of the solid state ionics technology. This book is divided into 17 chapters, and begins with an overview of various materials, such as glasses, heterogeneous or dispersed phase conductors, proton conductors, Nasicon, and fluorites. These topics are followed by a discussion on the problems related with entropy effects, subsurface space charge, and defect formation parameters. Significant chapters deal with the phenomenological, fractal, molecular dynamics, fluctuations, and correlations in superionic solid and solid electrolyte materials. A chapter tackles the solid state battery applications of solid electrolytes. This text ends with a chapter on the prediction of the potentials of activity in superionics. This book will be of value to graduate students and researchers who are interested in the solid state ionics technology.
Publisher: Elsevier
ISBN: 0323142931
Category : Science
Languages : en
Pages : 731
Book Description
Superionic Solids and Solid Electrolytes: Recent Trends describes the fundamental aspects, unique properties, and potential applications of superionic solids and solid electrolytes. These materials significantly contribute to the development of the solid state ionics technology. This book is divided into 17 chapters, and begins with an overview of various materials, such as glasses, heterogeneous or dispersed phase conductors, proton conductors, Nasicon, and fluorites. These topics are followed by a discussion on the problems related with entropy effects, subsurface space charge, and defect formation parameters. Significant chapters deal with the phenomenological, fractal, molecular dynamics, fluctuations, and correlations in superionic solid and solid electrolyte materials. A chapter tackles the solid state battery applications of solid electrolytes. This text ends with a chapter on the prediction of the potentials of activity in superionics. This book will be of value to graduate students and researchers who are interested in the solid state ionics technology.
Superionic Solids
Author: Suresh Chandra
Publisher: North Holland
ISBN:
Category : Science
Languages : en
Pages : 424
Book Description
Publisher: North Holland
ISBN:
Category : Science
Languages : en
Pages : 424
Book Description
Solid State Electrochemistry
Author: Peter G. Bruce
Publisher: Cambridge University Press
ISBN: 9780521599498
Category : Science
Languages : en
Pages : 364
Book Description
This book describes, for the first time in a modern text, the fundamental principles on which solid state electrochemistry is based. In this sense it is in contrast to other books in the field which concentrate on a description of materials. Topics include solid (ceramic) electrolytes, glasses, polymer electrolytes, intercalation electrodes, interfaces and applications. The different nature of ionic conductivity in ceramic, glassy and polymer electrolytes is described as are the thermodynamics and kinetics of intercalation reactions. The interface between solid electrolytes and electrodes is discussed and contrasted with the more conventional liquid state electrochemistry. The text provides an essential foundation of understanding for postgraduates or others entering the field for the first time and will also be of value in advanced undergraduate courses.
Publisher: Cambridge University Press
ISBN: 9780521599498
Category : Science
Languages : en
Pages : 364
Book Description
This book describes, for the first time in a modern text, the fundamental principles on which solid state electrochemistry is based. In this sense it is in contrast to other books in the field which concentrate on a description of materials. Topics include solid (ceramic) electrolytes, glasses, polymer electrolytes, intercalation electrodes, interfaces and applications. The different nature of ionic conductivity in ceramic, glassy and polymer electrolytes is described as are the thermodynamics and kinetics of intercalation reactions. The interface between solid electrolytes and electrodes is discussed and contrasted with the more conventional liquid state electrochemistry. The text provides an essential foundation of understanding for postgraduates or others entering the field for the first time and will also be of value in advanced undergraduate courses.
Handbook Of Solid State Batteries (Second Edition)
Author: Nancy J Dudney
Publisher: World Scientific
ISBN: 9814651915
Category : Science
Languages : en
Pages : 835
Book Description
Solid-state batteries hold the promise of providing energy storage with high volumetric and gravimetric energy densities at high power densities, yet with far less safety issues relative to those associated with conventional liquid or gel-based lithium-ion batteries. Solid-state batteries are envisioned to be useful for a broad spectrum of energy storage applications, including powering automobiles and portable electronic devices, as well as stationary storage and load-leveling of renewably generated energy. This comprehensive handbook covers a wide range of topics related to solid-state batteries, including advanced enabling characterization techniques, fundamentals of solid-state systems, novel solid electrolyte systems, interfaces, cell-level studies, and three-dimensional architectures. It is directed at physicists, chemists, materials scientists, electrochemists, electrical engineers, battery technologists, and evaluators of present and future generations of power sources. This handbook serves as a reference text providing state-of-the-art reviews on solid-state battery technologies, as well as providing insights into likely future developments in the field. It is extensively annotated with comprehensive references useful to the student and practitioners in the field.
Publisher: World Scientific
ISBN: 9814651915
Category : Science
Languages : en
Pages : 835
Book Description
Solid-state batteries hold the promise of providing energy storage with high volumetric and gravimetric energy densities at high power densities, yet with far less safety issues relative to those associated with conventional liquid or gel-based lithium-ion batteries. Solid-state batteries are envisioned to be useful for a broad spectrum of energy storage applications, including powering automobiles and portable electronic devices, as well as stationary storage and load-leveling of renewably generated energy. This comprehensive handbook covers a wide range of topics related to solid-state batteries, including advanced enabling characterization techniques, fundamentals of solid-state systems, novel solid electrolyte systems, interfaces, cell-level studies, and three-dimensional architectures. It is directed at physicists, chemists, materials scientists, electrochemists, electrical engineers, battery technologists, and evaluators of present and future generations of power sources. This handbook serves as a reference text providing state-of-the-art reviews on solid-state battery technologies, as well as providing insights into likely future developments in the field. It is extensively annotated with comprehensive references useful to the student and practitioners in the field.
Solid Electrolytes and Their Applications
Author: E. Subbarao
Publisher: Springer Science & Business Media
ISBN: 1461330815
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
Defect solid state has been an area of major scientific and technological interest for the last few decades, the resulting important applications sus taining this interest. Solid electrolytes represent one area of defect solid state. The early work on defect ionic crystals and, in particular, the classic results of Kiukkola and Wagner in 1957 on stabilized zirconia and doped thoria laid the foundation for a systematic study of solid electrolytes. In the same year, Ure reported on the ionic conductivity of calcium fluoride. Since then, intense worldwide research has advanced our understanding of the defect structure and electrical conductivity of oxygen ion conductors such as doped zirconia and thoria and of the fluorides. This paved the way for thermo dynamic and kinetic studies using these materials and for technological applications based on the oxygen ion conductors. In the last few years we have seen the emergence of two new classes of solid electrolytes of great signifi cance: the fJ-aluminas and the silver ion conductors. The significance of these discoveries is that now (i) solid electrolytes are available which at room temperature exhibit electrical conductivity comparable to that of liquid electrolytes, (ii) useful electrical conductivity values can be achieved over a wide range of temperature and ambient conditions, and (iii) a wide variety of ions are available as conducting species in solids. The stage is therefore set for a massive effort at developing applications.
Publisher: Springer Science & Business Media
ISBN: 1461330815
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
Defect solid state has been an area of major scientific and technological interest for the last few decades, the resulting important applications sus taining this interest. Solid electrolytes represent one area of defect solid state. The early work on defect ionic crystals and, in particular, the classic results of Kiukkola and Wagner in 1957 on stabilized zirconia and doped thoria laid the foundation for a systematic study of solid electrolytes. In the same year, Ure reported on the ionic conductivity of calcium fluoride. Since then, intense worldwide research has advanced our understanding of the defect structure and electrical conductivity of oxygen ion conductors such as doped zirconia and thoria and of the fluorides. This paved the way for thermo dynamic and kinetic studies using these materials and for technological applications based on the oxygen ion conductors. In the last few years we have seen the emergence of two new classes of solid electrolytes of great signifi cance: the fJ-aluminas and the silver ion conductors. The significance of these discoveries is that now (i) solid electrolytes are available which at room temperature exhibit electrical conductivity comparable to that of liquid electrolytes, (ii) useful electrical conductivity values can be achieved over a wide range of temperature and ambient conditions, and (iii) a wide variety of ions are available as conducting species in solids. The stage is therefore set for a massive effort at developing applications.
Fast Ion Transport in Solids
Author: B. Scrosati
Publisher: Springer Science & Business Media
ISBN: 9401119163
Category : Science
Languages : en
Pages : 375
Book Description
The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.
Publisher: Springer Science & Business Media
ISBN: 9401119163
Category : Science
Languages : en
Pages : 375
Book Description
The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.
Solid State Electrochemistry I
Author: Vladislav V. Kharton
Publisher: John Wiley & Sons
ISBN: 3527627871
Category : Science
Languages : en
Pages : 527
Book Description
The only comprehensive handbook on this important and rapidly developing topic combines fundamental information with a brief overview of recent advances in solid state electrochemistry, primarily targeting specialists working in this scientific field. Particular attention is focused on the most important developments performed during the last decade, methodological and theoretical aspects of solid state electrochemistry, as well as practical applications. The highly experienced editor has included chapters with critical reviews of theoretical approaches, experimental methods and modeling techniques, providing definitions and explaining relevant terminology as necessary. Several other chapters cover all the key groups of the ion-conducting solids important for practice, namely cationic, protonic, oxygen-anionic and mixed conductors, but also conducting polymer and hybrid materials. Finally, the whole is rounded off by brief surveys of advances in the fields of fuel cells, solid-state batteries, electrochemical sensors, and other applications of ion-conducting solids. Due to the very interdisciplinary nature of this topic, this is of great interest to material scientists, polymer chemists, physicists, and industrial scientists, too.
Publisher: John Wiley & Sons
ISBN: 3527627871
Category : Science
Languages : en
Pages : 527
Book Description
The only comprehensive handbook on this important and rapidly developing topic combines fundamental information with a brief overview of recent advances in solid state electrochemistry, primarily targeting specialists working in this scientific field. Particular attention is focused on the most important developments performed during the last decade, methodological and theoretical aspects of solid state electrochemistry, as well as practical applications. The highly experienced editor has included chapters with critical reviews of theoretical approaches, experimental methods and modeling techniques, providing definitions and explaining relevant terminology as necessary. Several other chapters cover all the key groups of the ion-conducting solids important for practice, namely cationic, protonic, oxygen-anionic and mixed conductors, but also conducting polymer and hybrid materials. Finally, the whole is rounded off by brief surveys of advances in the fields of fuel cells, solid-state batteries, electrochemical sensors, and other applications of ion-conducting solids. Due to the very interdisciplinary nature of this topic, this is of great interest to material scientists, polymer chemists, physicists, and industrial scientists, too.
Principles of the Solid State
Author: H. V. Keer
Publisher: New Age International
ISBN: 9788122404661
Category : Science
Languages : en
Pages : 404
Book Description
Uses an integrated, scientists' approach to the principles regulating the synthesis, structure and physical characteristics of crystalline solids. Mathematical derivations are kept to a minimum. Covers electrical properties of metals and band semiconductors, superionic conductors, ferrites and solid electrolytes. Features end-of-chapter problem sets.
Publisher: New Age International
ISBN: 9788122404661
Category : Science
Languages : en
Pages : 404
Book Description
Uses an integrated, scientists' approach to the principles regulating the synthesis, structure and physical characteristics of crystalline solids. Mathematical derivations are kept to a minimum. Covers electrical properties of metals and band semiconductors, superionic conductors, ferrites and solid electrolytes. Features end-of-chapter problem sets.
Solid State Batteries: Materials Design and Optimization
Author: Christian Julien
Publisher: Springer Science & Business Media
ISBN: 146152704X
Category : Science
Languages : en
Pages : 577
Book Description
The field of solid state ionics is multidisciplinary in nature. Chemists, physicists, electrochimists, and engineers all are involved in the research and development of materials, techniques, and theoretical approaches. This science is one of the great triumphs of the second part of the 20th century. For nearly a century, development of materials for solid-state ionic technology has been restricted. During the last two decades there have been remarkable advances: more materials were discovered, modem technologies were used for characterization and optimization of ionic conduction in solids, trial and error approaches were deserted for defined predictions. During the same period fundamental theories for ion conduction in solids appeared. The large explosion of solid-state ionic material science may be considered to be due to two other influences. The first aspect is related to economy and connected with energy production, storage, and utilization. There are basic problems in industrialized countries from the economical, environmental, political, and technological points of view. The possibility of storing a large amount of utilizable energy in a comparatively small volume would make a number of non-conventional intermittent energy sources of practical convenience and cost. The second aspect is related to huge increase in international relationships between researchers and exchanges of results make considerable progress between scientists; one find many institutes joined in common search programs such as the material science networks organized by EEC in the European countries.
Publisher: Springer Science & Business Media
ISBN: 146152704X
Category : Science
Languages : en
Pages : 577
Book Description
The field of solid state ionics is multidisciplinary in nature. Chemists, physicists, electrochimists, and engineers all are involved in the research and development of materials, techniques, and theoretical approaches. This science is one of the great triumphs of the second part of the 20th century. For nearly a century, development of materials for solid-state ionic technology has been restricted. During the last two decades there have been remarkable advances: more materials were discovered, modem technologies were used for characterization and optimization of ionic conduction in solids, trial and error approaches were deserted for defined predictions. During the same period fundamental theories for ion conduction in solids appeared. The large explosion of solid-state ionic material science may be considered to be due to two other influences. The first aspect is related to economy and connected with energy production, storage, and utilization. There are basic problems in industrialized countries from the economical, environmental, political, and technological points of view. The possibility of storing a large amount of utilizable energy in a comparatively small volume would make a number of non-conventional intermittent energy sources of practical convenience and cost. The second aspect is related to huge increase in international relationships between researchers and exchanges of results make considerable progress between scientists; one find many institutes joined in common search programs such as the material science networks organized by EEC in the European countries.
Solid Electrolytes
Author: Paul Hagenmuller
Publisher: Elsevier
ISBN: 1483191656
Category : Science
Languages : en
Pages : 570
Book Description
Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in body-centered cubic structures; and materials with the fluorite and antifluorite structures. The diffraction studies of superionic conductors are covered. The significance of defects and disorder to ionic conductivity are discussed. The text describes the transport mechanisms and lattice defects. A study of the diffusion and ionic conductivity equations is presented. A chapter is devoted to the quasi-elastic neutron scattering. Another section focuses on the complex conductivity in the microwave range. The book can provide useful information to scientists, physicists, students, and researchers.
Publisher: Elsevier
ISBN: 1483191656
Category : Science
Languages : en
Pages : 570
Book Description
Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in body-centered cubic structures; and materials with the fluorite and antifluorite structures. The diffraction studies of superionic conductors are covered. The significance of defects and disorder to ionic conductivity are discussed. The text describes the transport mechanisms and lattice defects. A study of the diffusion and ionic conductivity equations is presented. A chapter is devoted to the quasi-elastic neutron scattering. Another section focuses on the complex conductivity in the microwave range. The book can provide useful information to scientists, physicists, students, and researchers.