Superconducting Quantumcircuits for Hybrid Architectures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Superconducting Quantumcircuits for Hybrid Architectures PDF full book. Access full book title Superconducting Quantumcircuits for Hybrid Architectures by Patrick Winkel. Download full books in PDF and EPUB format.

Superconducting Quantumcircuits for Hybrid Architectures

Superconducting Quantumcircuits for Hybrid Architectures PDF Author: Patrick Winkel
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Superconducting Quantumcircuits for Hybrid Architectures

Superconducting Quantumcircuits for Hybrid Architectures PDF Author: Patrick Winkel
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Quantum Computing

Quantum Computing PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 030947969X
Category : Computers
Languages : en
Pages : 273

Book Description
Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

Hybrid Quantum Systems

Hybrid Quantum Systems PDF Author: Yoshiro Hirayama
Publisher: Springer Nature
ISBN: 9811666792
Category : Science
Languages : en
Pages : 352

Book Description
This book presents state-of-the-art research on quantum hybridization, manipulation, and measurement in the context of hybrid quantum systems. It covers a broad range of experimental and theoretical topics relevant to quantum hybridization, manipulation, and measurement technologies, including a magnetic field sensor based on spin qubits in diamond NV centers, coherently coupled superconductor qubits, novel coherent couplings between electron and nuclear spin, photons and phonons, and coherent coupling of atoms and photons. Each topic is concisely described by an expert at the forefront of the field, helping readers quickly catch up on the latest advances in fundamental sciences and technologies of hybrid quantum systems, while also providing an essential overview.

Hybrid Superconducting Quantum Computing Architectures

Hybrid Superconducting Quantum Computing Architectures PDF Author: Matthew Arthur Beck
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Quantum computing holds the promise to address and solve computational problems that are otherwise intractable on a classical, transistor based machine. While much progress has been made in the last decade towards the realization of a scalable superconducting quantum processor, many questions remain unanswered. The work contained in this thesis addresses two equally important concerns; These are specifically that of quantum information storage and transfer and the scaling of current qubit control and readout methods. Superconducting quantum processors are exactly what their name implies: processors. While the goal is to eventually build a universal quantum computer, it is not unreasonable to envision near term quantum processors hard wired to perform specific computational tasks. This idea of compartmentalized quantum processing necessitates that the quantum results of a computation either be stored and/or transferred for latter / further use. A natural candidate to realize such a quantum memory is the neutral Rydberg atom. The hyperfine states of cesium atoms exhibit coherence times greater than 1 second while adjacent Rydberg energy levels have electric dipole transitions in the gigahertz regime; These properties make it a suitable candidate to realize a quantum memory and information bus between adjacent superconducting processors yielding an unprecedented ratio of coherence time to gate time. To realize such a computing architecture, the coherent coupling between a single Rydberg atom and superconducting bus resonator must first be demonstrated. This first half of this thesis details the development of a superconducting interface meant to realize strong coupling to a single Rydberg atom. To date, the experimental liquid Helium 4 K UHV cryostat has been built, characterized, and installed. Superconducting niobium coplanar waveguide (CPW) resonators have been designed and fabricated to facilitate strong coupling to the Rydberg atom through on-chip microwave field engineering. Additionally, the CPW resonators have been tailored to achieve quality factors above 104 at 4 K. The project is currently still on-going with single-atom trapping and state characterization near the 4 K chip surface under investigation. The second portion of this thesis details the development of a superconducting single flux quantum (SFQ) pulse generator for transmon qubit control. As the size of superconducting quantum processors scales beyond the level of a few tens of qubits, the control hardware overhead becomes untenable. For current technology based on microwave control pulses generated at room temperature followed by amplification and heterodyne detection, the heat load and physical footprint of the required classical hardware preclude brute force scaling to qubit arrays more than "100. The work contained herein details the development, fabrication, characterization and finally integration of a dc/SFQ driver with a transmon qubit on a single chip as a first step towards an all superconducting digital control scheme of quantum processors. Details of the multi-additive layer processing and fabrication required to realize these devices are discussed in the context of maintaining high ( 10 us) qubit coherent times and small superconducting resonator loss. To date, coherent qubit rotations have been achieved via application of SFQ pulses with pulse to pulse spacing aligned with subharmonics of the qubit frequency. Interleaved randomized benchmarking (RB) of SFQ driven single qubit gates realized are currently at 90% level. Future plans regarding a flip chip / multi-chip module approach to increasing gate fidelities will also be discussed

Superconducting Circuit Architectures Explained

Superconducting Circuit Architectures Explained PDF Author: Charles B. Lozano
Publisher: Priya Publishers
ISBN: 9785798581580
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Quantum science and technology provides new possibilities in processing information, simulating novel materials, and answering fundamental questions beyond the reach of classical methods. Realizing these goals relies on the advancement of physical platforms, among which superconducting circuits have been one of the leading candidates offering complete control and read-out over individual qubits and the potential to scale up. However, most circuit-based multi-qubit architectures only include nearest-neighbor (NN) coupling between qubits, which limits the efficient implementation of low-overhead quantum error correction and access to a wide range of physical models using analog quantum simulation

Quantum Computing

Quantum Computing PDF Author: Himanshu Thapliyal
Publisher: Springer Nature
ISBN: 3031379667
Category : Technology & Engineering
Languages : en
Pages : 183

Book Description
This book provides readers with the current state-of-the-art research and technology on quantum computing. The authors provide design paradigms of quantum computing. Topics covered include multi-programming mechanisms on near-term quantum computing, Lagrange interpolation approach for the general parameter-shift rule, architecture-aware decomposition of quantum circuits, software for massively parallel quantum computing, machine learning in quantum annealing processors, quantum annealing for real-world machine learning applications, queuing theory models for (Fault-Tolerant) quantum circuits, machine learning for quantum circuit reliability assessment, and side-channel leakage in Suzuki stack circuits.

Superconducting Quantum Circuits

Superconducting Quantum Circuits PDF Author: Johannes Balthasar Majer
Publisher: Delft University Press
ISBN:
Category : Science
Languages : en
Pages : 128

Book Description
Contents of this Doctoral Dissertation include: vortices in Josephson junction arrays, fabrication method, quantum ratchet effect for vortices, quantum transport in a few band system, vortex transport in quasi one-dimensional Josephson junction arrays, quantum vortices with weak interaction, simple phase bias for superconducting circuits, coupling of qubits, persistent-current qubit as quasi-spin

Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits

Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits PDF Author: Cécile Grèzes
Publisher: Springer
ISBN: 3319215728
Category : Computers
Languages : en
Pages : 240

Book Description
This work describes theoretical and experimental advances towards the realization of a hybrid quantum processor in which the collective degrees of freedom of an ensemble of spins in a crystal are used as a multi-qubit register for superconducting qubits. A memory protocol made of write, read and reset operations is first presented, followed by the demonstration of building blocks of its implementation with NV center spins in diamond. Qubit states are written by resonant absorption of a microwave photon in the spin ensemble and read out of the memory on-demand by applying Hahn echo refocusing techniques to the spins. The reset step is implemented in between two successive write-read sequences using optical repumping of the spins.

Decoherence and Time-Resolved Readout in Superconducting Quantum Circuits (Dekohärenz und Zeitaufgelösste Quantenmessung in Supraleitenden Schaltkreisen)

Decoherence and Time-Resolved Readout in Superconducting Quantum Circuits (Dekohärenz und Zeitaufgelösste Quantenmessung in Supraleitenden Schaltkreisen) PDF Author: Georg M. Reuther
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832528466
Category : Computers
Languages : en
Pages : 158

Book Description
Superconducting quantum circuits are promising candidates for solid-state based quantum computation. However, minimizing dissipation caused by external noise sources remains a tough challenge. Here, we present an analytic dissipative theory for a complex circuit of two resonators coupled via a flux qubit. In this 'quantum switch', the qubit acts as a tunable coupler between the resonators, which enables switching their interaction on and off. A natural application of this setup is to create entangled two-resonator states. However, it turns out that, even if the qubit has no dynamics, qubit dissipation affects the resonators to a considerable degree. For successful quantum information processing, it is desirable to demonstrate the coherence of qubit time evolution in single-shot experiments without too much backaction on the qubit. In the second part of this thesis, we present a novel scheme for a time-resolved single-run measurement of coherent qubit dynamics. For a charge qubit probed by a weak high-frequency signal, we find that the reflected outgoing signal possesses a time-dependent phase shift that is proportional to a qubit observable. A similar approach is presented for a flux qubit coupled to a resonantly driven high-frequency oscillator, which serves as a meter device for monitoring the time-resolved qubit dynamics.

Superconducting Devices in Quantum Optics

Superconducting Devices in Quantum Optics PDF Author: Robert Hadfield
Publisher: Springer
ISBN: 3319240919
Category : Computers
Languages : en
Pages : 256

Book Description
This book presents the basics and applications of superconducting devices in quantum optics. Over the past decade, superconducting devices have risen to prominence in the arena of quantum optics and quantum information processing. Superconducting detectors provide unparalleled performance for the detection of infrared photons in quantum cryptography, enable fundamental advances in quantum optics, and provide a direct route to on-chip optical quantum information processing. Superconducting circuits based on Josephson junctions provide a blueprint for scalable quantum information processing as well as opening up a new regime for quantum optics at microwave wavelengths. The new field of quantum acoustics allows the state of a superconducting qubit to be transmitted as a phonon excitation. This volume, edited by two leading researchers, provides a timely compilation of contributions from top groups worldwide across this dynamic field, anticipating future advances in this domain.