Author: Robert Bogdan Staszewski
Publisher: John Wiley & Sons
ISBN: 0470041943
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.
All-Digital Frequency Synthesizer in Deep-Submicron CMOS
Author: Robert Bogdan Staszewski
Publisher: John Wiley & Sons
ISBN: 0470041943
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.
Publisher: John Wiley & Sons
ISBN: 0470041943
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.
Electrical & Electronics Abstracts
Author:
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 2240
Book Description
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 2240
Book Description
Digital Integrated Circuit Design
Author: Hubert Kaeslin
Publisher: Cambridge University Press
ISBN: 0521882672
Category : Technology & Engineering
Languages : en
Pages : 878
Book Description
This practical, tool-independent guide to designing digital circuits takes a unique, top-down approach, reflecting the nature of the design process in industry. Starting with architecture design, the book comprehensively explains the why and how of digital circuit design, using the physics designers need to know, and no more.
Publisher: Cambridge University Press
ISBN: 0521882672
Category : Technology & Engineering
Languages : en
Pages : 878
Book Description
This practical, tool-independent guide to designing digital circuits takes a unique, top-down approach, reflecting the nature of the design process in industry. Starting with architecture design, the book comprehensively explains the why and how of digital circuit design, using the physics designers need to know, and no more.
Data Conversion Handbook
Author: Walt Kester
Publisher: Newnes
ISBN: 0750678410
Category : Computers
Languages : en
Pages : 977
Book Description
This comprehensive new handbook is a one-stop engineering reference covering data converter fundamentals, techniques, and applications. Beginning with the basic theoretical elements necessary for a complete understanding of data converters, the book covers all the latest advances made in this changing field. Details are provided on the design of high-speec ADCs, high accuracy DACs and ADCs, sample-and-hold amplifiers, voltage sources and current reference,noise-shaping coding, sigma-delta converters, and much more.
Publisher: Newnes
ISBN: 0750678410
Category : Computers
Languages : en
Pages : 977
Book Description
This comprehensive new handbook is a one-stop engineering reference covering data converter fundamentals, techniques, and applications. Beginning with the basic theoretical elements necessary for a complete understanding of data converters, the book covers all the latest advances made in this changing field. Details are provided on the design of high-speec ADCs, high accuracy DACs and ADCs, sample-and-hold amplifiers, voltage sources and current reference,noise-shaping coding, sigma-delta converters, and much more.
模拟CMOS集成电路设计(国外大学优秀教材——微电子类系列(影印版))
Author: Behzad Razavi
Publisher: 清华大学出版社有限公司
ISBN: 9787302108863
Category : Linear integrated circuits
Languages : zh-CN
Pages : 712
Book Description
本书介绍了模拟电路设计的基本概念, 说明了CMOS模拟集成电路设计技术的重要作用, 描述了MOS器件的物理模型及工作特性等.
Publisher: 清华大学出版社有限公司
ISBN: 9787302108863
Category : Linear integrated circuits
Languages : zh-CN
Pages : 712
Book Description
本书介绍了模拟电路设计的基本概念, 说明了CMOS模拟集成电路设计技术的重要作用, 描述了MOS器件的物理模型及工作特性等.
Design of Integrated Circuits for Optical Communications
Author: Behzad Razavi
Publisher: John Wiley & Sons
ISBN: 1118439457
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
The only book on integrated circuits for optical communications that fully covers High-Speed IOs, PLLs, CDRs, and transceiver design including optical communication The increasing demand for high-speed transport of data has revitalized optical communications, leading to extensive work on high-speed device and circuit design. With the proliferation of the Internet and the rise in the speed of microprocessors and memories, the transport of data continues to be the bottleneck, motivating work on faster communication channels. Design of Integrated Circuits for Optical Communications, Second Edition deals with the design of high-speed integrated circuits for optical communication transceivers. Building upon a detailed understanding of optical devices, the book describes the analysis and design of critical building blocks, such as transimpedance and limiting amplifiers, laser drivers, phase-locked loops, oscillators, clock and data recovery circuits, and multiplexers. The Second Edition of this bestselling textbook has been fully updated with: A tutorial treatment of broadband circuits for both students and engineers New and unique information dealing with clock and data recovery circuits and multiplexers A chapter dedicated to burst-mode optical communications A detailed study of new circuit developments for optical transceivers An examination of recent implementations in CMOS technology This text is ideal for senior graduate students and engineers involved in high-speed circuit design for optical communications, as well as the more general field of wireline communications.
Publisher: John Wiley & Sons
ISBN: 1118439457
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
The only book on integrated circuits for optical communications that fully covers High-Speed IOs, PLLs, CDRs, and transceiver design including optical communication The increasing demand for high-speed transport of data has revitalized optical communications, leading to extensive work on high-speed device and circuit design. With the proliferation of the Internet and the rise in the speed of microprocessors and memories, the transport of data continues to be the bottleneck, motivating work on faster communication channels. Design of Integrated Circuits for Optical Communications, Second Edition deals with the design of high-speed integrated circuits for optical communication transceivers. Building upon a detailed understanding of optical devices, the book describes the analysis and design of critical building blocks, such as transimpedance and limiting amplifiers, laser drivers, phase-locked loops, oscillators, clock and data recovery circuits, and multiplexers. The Second Edition of this bestselling textbook has been fully updated with: A tutorial treatment of broadband circuits for both students and engineers New and unique information dealing with clock and data recovery circuits and multiplexers A chapter dedicated to burst-mode optical communications A detailed study of new circuit developments for optical transceivers An examination of recent implementations in CMOS technology This text is ideal for senior graduate students and engineers involved in high-speed circuit design for optical communications, as well as the more general field of wireline communications.
Analog Circuit Design
Author: Jim Williams
Publisher: Elsevier
ISBN: 1483105156
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
Analog Circuit Design
Publisher: Elsevier
ISBN: 1483105156
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
Analog Circuit Design
Principles of Data Conversion System Design
Author: Behzad Razavi
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 280
Book Description
This advanced text and reference covers the design and implementation of integrated circuits for analog-to-digital and digital-to-analog conversion. It begins with basic concepts and systematically leads the reader to advanced topics, describing design issues and techniques at both circuit and system level. Gain a system-level perspective of data conversion units and their trade-offs with this state-of-the art book. Topics covered include: sampling circuits and architectures, D/A and A/D architectures; comparator and op amp design; calibration techniques; testing and characterization; and more!
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 280
Book Description
This advanced text and reference covers the design and implementation of integrated circuits for analog-to-digital and digital-to-analog conversion. It begins with basic concepts and systematically leads the reader to advanced topics, describing design issues and techniques at both circuit and system level. Gain a system-level perspective of data conversion units and their trade-offs with this state-of-the art book. Topics covered include: sampling circuits and architectures, D/A and A/D architectures; comparator and op amp design; calibration techniques; testing and characterization; and more!
High Speed Serdes Devices and Applications
Author: David Robert Stauffer
Publisher: Springer Science & Business Media
ISBN: 038779834X
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
The simplest method of transferring data through the inputs or outputs of a silicon chip is to directly connect each bit of the datapath from one chip to the next chip. Once upon a time this was an acceptable approach. However, one aspect (and perhaps the only aspect) of chip design which has not changed during the career of the authors is Moore’s Law, which has dictated substantial increases in the number of circuits that can be manufactured on a chip. The pin densities of chip packaging technologies have not increased at the same pace as has silicon density, and this has led to a prevalence of High Speed Serdes (HSS) devices as an inherent part of almost any chip design. HSS devices are the dominant form of input/output for many (if not most) high-integration chips, moving serial data between chips at speeds up to 10 Gbps and beyond. Chip designers with a background in digital logic design tend to view HSS devices as simply complex digital input/output cells. This view ignores the complexity associated with serially moving billions of bits of data per second. At these data rates, the assumptions associated with digital signals break down and analog factors demand consideration. The chip designer who oversimplifies the problem does so at his or her own peril.
Publisher: Springer Science & Business Media
ISBN: 038779834X
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
The simplest method of transferring data through the inputs or outputs of a silicon chip is to directly connect each bit of the datapath from one chip to the next chip. Once upon a time this was an acceptable approach. However, one aspect (and perhaps the only aspect) of chip design which has not changed during the career of the authors is Moore’s Law, which has dictated substantial increases in the number of circuits that can be manufactured on a chip. The pin densities of chip packaging technologies have not increased at the same pace as has silicon density, and this has led to a prevalence of High Speed Serdes (HSS) devices as an inherent part of almost any chip design. HSS devices are the dominant form of input/output for many (if not most) high-integration chips, moving serial data between chips at speeds up to 10 Gbps and beyond. Chip designers with a background in digital logic design tend to view HSS devices as simply complex digital input/output cells. This view ignores the complexity associated with serially moving billions of bits of data per second. At these data rates, the assumptions associated with digital signals break down and analog factors demand consideration. The chip designer who oversimplifies the problem does so at his or her own peril.
Time-to-Digital Converters
Author: Stephan Henzler
Publisher: Springer Science & Business Media
ISBN: 9048186285
Category : Technology & Engineering
Languages : en
Pages : 132
Book Description
Micro-electronics and so integrated circuit design are heavily driven by technology scaling. The main engine of scaling is an increased system performance at reduced manufacturing cost (per system). In most systems digital circuits dominate with respect to die area and functional complexity. Digital building blocks take full - vantage of reduced device geometries in terms of area, power per functionality, and switching speed. On the other hand, analog circuits rely not on the fast transition speed between a few discrete states but fairly on the actual shape of the trans- tor characteristic. Technology scaling continuously degrades these characteristics with respect to analog performance parameters like output resistance or intrinsic gain. Below the 100 nm technology node the design of analog and mixed-signal circuits becomes perceptibly more dif cult. This is particularly true for low supply voltages near to 1V or below. The result is not only an increased design effort but also a growing power consumption. The area shrinks considerably less than p- dicted by the digital scaling factor. Obviously, both effects are contradictory to the original goal of scaling. However, digital circuits become faster, smaller, and less power hungry. The fast switching transitions reduce the susceptibility to noise, e. g. icker noise in the transistors. There are also a few drawbacks like the generation of power supply noise or the lack of power supply rejection.
Publisher: Springer Science & Business Media
ISBN: 9048186285
Category : Technology & Engineering
Languages : en
Pages : 132
Book Description
Micro-electronics and so integrated circuit design are heavily driven by technology scaling. The main engine of scaling is an increased system performance at reduced manufacturing cost (per system). In most systems digital circuits dominate with respect to die area and functional complexity. Digital building blocks take full - vantage of reduced device geometries in terms of area, power per functionality, and switching speed. On the other hand, analog circuits rely not on the fast transition speed between a few discrete states but fairly on the actual shape of the trans- tor characteristic. Technology scaling continuously degrades these characteristics with respect to analog performance parameters like output resistance or intrinsic gain. Below the 100 nm technology node the design of analog and mixed-signal circuits becomes perceptibly more dif cult. This is particularly true for low supply voltages near to 1V or below. The result is not only an increased design effort but also a growing power consumption. The area shrinks considerably less than p- dicted by the digital scaling factor. Obviously, both effects are contradictory to the original goal of scaling. However, digital circuits become faster, smaller, and less power hungry. The fast switching transitions reduce the susceptibility to noise, e. g. icker noise in the transistors. There are also a few drawbacks like the generation of power supply noise or the lack of power supply rejection.