Author: Michael Negnevitsky
Publisher: Pearson Education
ISBN: 9780321204660
Category : Computers
Languages : en
Pages : 454
Book Description
Keeping the maths to a minimum, Negnevitsky explains the principles of AI, demonstrates how systems are built, what they are useful for and how to choose the right tool for the job.
Artificial Intelligence
Author: Michael Negnevitsky
Publisher: Pearson Education
ISBN: 9780321204660
Category : Computers
Languages : en
Pages : 454
Book Description
Keeping the maths to a minimum, Negnevitsky explains the principles of AI, demonstrates how systems are built, what they are useful for and how to choose the right tool for the job.
Publisher: Pearson Education
ISBN: 9780321204660
Category : Computers
Languages : en
Pages : 454
Book Description
Keeping the maths to a minimum, Negnevitsky explains the principles of AI, demonstrates how systems are built, what they are useful for and how to choose the right tool for the job.
AWS Certified Machine Learning Study Guide
Author: Shreyas Subramanian
Publisher: John Wiley & Sons
ISBN: 1119821010
Category : Computers
Languages : en
Pages : 382
Book Description
Succeed on the AWS Machine Learning exam or in your next job as a machine learning specialist on the AWS Cloud platform with this hands-on guide As the most popular cloud service in the world today, Amazon Web Services offers a wide range of opportunities for those interested in the development and deployment of artificial intelligence and machine learning business solutions. The AWS Certified Machine Learning Study Guide: Specialty (MLS-CO1) Exam delivers hyper-focused, authoritative instruction for anyone considering the pursuit of the prestigious Amazon Web Services Machine Learning certification or a new career as a machine learning specialist working within the AWS architecture. From exam to interview to your first day on the job, this study guide provides the domain-by-domain specific knowledge you need to build, train, tune, and deploy machine learning models with the AWS Cloud. And with the practice exams and assessments, electronic flashcards, and supplementary online resources that accompany this Study Guide, you’ll be prepared for success in every subject area covered by the exam. You’ll also find: An intuitive and organized layout perfect for anyone taking the exam for the first time or seasoned professionals seeking a refresher on machine learning on the AWS Cloud Authoritative instruction on a widely recognized certification that unlocks countless career opportunities in machine learning and data science Access to the Sybex online learning resources and test bank, with chapter review questions, a full-length practice exam, hundreds of electronic flashcards, and a glossary of key terms AWS Certified Machine Learning Study Guide: Specialty (MLS-CO1) Exam is an indispensable guide for anyone seeking to prepare themselves for success on the AWS Certified Machine Learning Specialty exam or for a job interview in the field of machine learning, or who wishes to improve their skills in the field as they pursue a career in AWS machine learning.
Publisher: John Wiley & Sons
ISBN: 1119821010
Category : Computers
Languages : en
Pages : 382
Book Description
Succeed on the AWS Machine Learning exam or in your next job as a machine learning specialist on the AWS Cloud platform with this hands-on guide As the most popular cloud service in the world today, Amazon Web Services offers a wide range of opportunities for those interested in the development and deployment of artificial intelligence and machine learning business solutions. The AWS Certified Machine Learning Study Guide: Specialty (MLS-CO1) Exam delivers hyper-focused, authoritative instruction for anyone considering the pursuit of the prestigious Amazon Web Services Machine Learning certification or a new career as a machine learning specialist working within the AWS architecture. From exam to interview to your first day on the job, this study guide provides the domain-by-domain specific knowledge you need to build, train, tune, and deploy machine learning models with the AWS Cloud. And with the practice exams and assessments, electronic flashcards, and supplementary online resources that accompany this Study Guide, you’ll be prepared for success in every subject area covered by the exam. You’ll also find: An intuitive and organized layout perfect for anyone taking the exam for the first time or seasoned professionals seeking a refresher on machine learning on the AWS Cloud Authoritative instruction on a widely recognized certification that unlocks countless career opportunities in machine learning and data science Access to the Sybex online learning resources and test bank, with chapter review questions, a full-length practice exam, hundreds of electronic flashcards, and a glossary of key terms AWS Certified Machine Learning Study Guide: Specialty (MLS-CO1) Exam is an indispensable guide for anyone seeking to prepare themselves for success on the AWS Certified Machine Learning Specialty exam or for a job interview in the field of machine learning, or who wishes to improve their skills in the field as they pursue a career in AWS machine learning.
Building Intelligent Systems
Author: Geoff Hulten
Publisher: Apress
ISBN: 1484234324
Category : Computers
Languages : en
Pages : 346
Book Description
Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success. This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to apply your existing skills in software engineering, data science, machine learning, management, and program management to produce working systems. Building Intelligent Systems is based on more than a decade of experience building Internet-scale Intelligent Systems that have hundreds of millions of user interactions per day in some of the largest and most important software systems in the world. What You’ll Learn Understand the concept of an Intelligent System: What it is good for, when you need one, and how to set it up for success Design an intelligent user experience: Produce data to help make the Intelligent System better over time Implement an Intelligent System: Execute, manage, and measure Intelligent Systems in practice Create intelligence: Use different approaches, including machine learning Orchestrate an Intelligent System: Bring the parts together throughout its life cycle and achieve the impact you want Who This Book Is For Software engineers, machine learning practitioners, and technical managers who want to build effective intelligent systems
Publisher: Apress
ISBN: 1484234324
Category : Computers
Languages : en
Pages : 346
Book Description
Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success. This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to apply your existing skills in software engineering, data science, machine learning, management, and program management to produce working systems. Building Intelligent Systems is based on more than a decade of experience building Internet-scale Intelligent Systems that have hundreds of millions of user interactions per day in some of the largest and most important software systems in the world. What You’ll Learn Understand the concept of an Intelligent System: What it is good for, when you need one, and how to set it up for success Design an intelligent user experience: Produce data to help make the Intelligent System better over time Implement an Intelligent System: Execute, manage, and measure Intelligent Systems in practice Create intelligence: Use different approaches, including machine learning Orchestrate an Intelligent System: Bring the parts together throughout its life cycle and achieve the impact you want Who This Book Is For Software engineers, machine learning practitioners, and technical managers who want to build effective intelligent systems
Azure AI Fundamentals
Author: David Voss
Publisher:
ISBN:
Category :
Languages : en
Pages : 57
Book Description
Update: 8/11/2020 The author received notice that he passed the Microsoft AI Fundamentals exam AI-900. This was the study guide he developed to prepare for the exam. David Voss, Azure AI Fundamentals AI-900, Microsoft Certification ID: 990151288 Audience This study guide follows the syllabus for the Microsoft AI Foundations exam (AI-900). More importantly, this book will help you gain the foundational knowledge needed to become an AI practitioner. You do not need a mathematical or programming background to understand the concepts in this book or to pass the AI-900 exam. About VOSS AIThe motto of VOSS.AI is "AI for All." VOSS.AI creates products and services for anyone who has an interest in learning about Artificial Intelligence. We have chosen Microsoft AI as our platform of choice because Microsoft has made a concerted effort to ensure their AI products are accessible to everyone. Study with Confidence We are committed to the integrity of the exams, as well as you as a student. This study guide does not contain any material that compromises the integrity of any Microsoft exam. All materials, including practice questions, were developed using the syllabus for the exam and thorough research of published articles. Additional Online Resources VOSS.AI provides you with additional online resources for your studies. Specifically, you can find additional study questions for the AI-900 exam. We will add new questions frequently.
Publisher:
ISBN:
Category :
Languages : en
Pages : 57
Book Description
Update: 8/11/2020 The author received notice that he passed the Microsoft AI Fundamentals exam AI-900. This was the study guide he developed to prepare for the exam. David Voss, Azure AI Fundamentals AI-900, Microsoft Certification ID: 990151288 Audience This study guide follows the syllabus for the Microsoft AI Foundations exam (AI-900). More importantly, this book will help you gain the foundational knowledge needed to become an AI practitioner. You do not need a mathematical or programming background to understand the concepts in this book or to pass the AI-900 exam. About VOSS AIThe motto of VOSS.AI is "AI for All." VOSS.AI creates products and services for anyone who has an interest in learning about Artificial Intelligence. We have chosen Microsoft AI as our platform of choice because Microsoft has made a concerted effort to ensure their AI products are accessible to everyone. Study with Confidence We are committed to the integrity of the exams, as well as you as a student. This study guide does not contain any material that compromises the integrity of any Microsoft exam. All materials, including practice questions, were developed using the syllabus for the exam and thorough research of published articles. Additional Online Resources VOSS.AI provides you with additional online resources for your studies. Specifically, you can find additional study questions for the AI-900 exam. We will add new questions frequently.
AWS Certified Machine Learning Specialty: MLS-C01 Certification Guide
Author: Somanath Nanda
Publisher: Packt Publishing Ltd
ISBN: 1800568436
Category : Computers
Languages : en
Pages : 338
Book Description
Prepare to achieve AWS Machine Learning Specialty certification with this complete, up-to-date guide and take the exam with confidence Key Features Get to grips with core machine learning algorithms along with AWS implementation Build model training and inference pipelines and deploy machine learning models to the Amazon Web Services (AWS) cloud Learn all about the AWS services available for machine learning in order to pass the MLS-C01 exam Book DescriptionThe AWS Certified Machine Learning Specialty exam tests your competency to perform machine learning (ML) on AWS infrastructure. This book covers the entire exam syllabus using practical examples to help you with your real-world machine learning projects on AWS. Starting with an introduction to machine learning on AWS, you'll learn the fundamentals of machine learning and explore important AWS services for artificial intelligence (AI). You'll then see how to prepare data for machine learning and discover a wide variety of techniques for data manipulation and transformation for different types of variables. The book also shows you how to handle missing data and outliers and takes you through various machine learning tasks such as classification, regression, clustering, forecasting, anomaly detection, text mining, and image processing, along with the specific ML algorithms you need to know to pass the exam. Finally, you'll explore model evaluation, optimization, and deployment and get to grips with deploying models in a production environment and monitoring them. By the end of this book, you'll have gained knowledge of the key challenges in machine learning and the solutions that AWS has released for each of them, along with the tools, methods, and techniques commonly used in each domain of AWS ML.What you will learn Understand all four domains covered in the exam, along with types of questions, exam duration, and scoring Become well-versed with machine learning terminologies, methodologies, frameworks, and the different AWS services for machine learning Get to grips with data preparation and using AWS services for batch and real-time data processing Explore the built-in machine learning algorithms in AWS and build and deploy your own models Evaluate machine learning models and tune hyperparameters Deploy machine learning models with the AWS infrastructure Who this book is for This AWS book is for professionals and students who want to prepare for and pass the AWS Certified Machine Learning Specialty exam or gain deeper knowledge of machine learning with a special focus on AWS. Beginner-level knowledge of machine learning and AWS services is necessary before getting started with this book.
Publisher: Packt Publishing Ltd
ISBN: 1800568436
Category : Computers
Languages : en
Pages : 338
Book Description
Prepare to achieve AWS Machine Learning Specialty certification with this complete, up-to-date guide and take the exam with confidence Key Features Get to grips with core machine learning algorithms along with AWS implementation Build model training and inference pipelines and deploy machine learning models to the Amazon Web Services (AWS) cloud Learn all about the AWS services available for machine learning in order to pass the MLS-C01 exam Book DescriptionThe AWS Certified Machine Learning Specialty exam tests your competency to perform machine learning (ML) on AWS infrastructure. This book covers the entire exam syllabus using practical examples to help you with your real-world machine learning projects on AWS. Starting with an introduction to machine learning on AWS, you'll learn the fundamentals of machine learning and explore important AWS services for artificial intelligence (AI). You'll then see how to prepare data for machine learning and discover a wide variety of techniques for data manipulation and transformation for different types of variables. The book also shows you how to handle missing data and outliers and takes you through various machine learning tasks such as classification, regression, clustering, forecasting, anomaly detection, text mining, and image processing, along with the specific ML algorithms you need to know to pass the exam. Finally, you'll explore model evaluation, optimization, and deployment and get to grips with deploying models in a production environment and monitoring them. By the end of this book, you'll have gained knowledge of the key challenges in machine learning and the solutions that AWS has released for each of them, along with the tools, methods, and techniques commonly used in each domain of AWS ML.What you will learn Understand all four domains covered in the exam, along with types of questions, exam duration, and scoring Become well-versed with machine learning terminologies, methodologies, frameworks, and the different AWS services for machine learning Get to grips with data preparation and using AWS services for batch and real-time data processing Explore the built-in machine learning algorithms in AWS and build and deploy your own models Evaluate machine learning models and tune hyperparameters Deploy machine learning models with the AWS infrastructure Who this book is for This AWS book is for professionals and students who want to prepare for and pass the AWS Certified Machine Learning Specialty exam or gain deeper knowledge of machine learning with a special focus on AWS. Beginner-level knowledge of machine learning and AWS services is necessary before getting started with this book.
Artificial Intelligence
Author: Stuart Russell
Publisher: Createspace Independent Publishing Platform
ISBN: 9781537600314
Category :
Languages : en
Pages : 626
Book Description
Artificial Intelligence: A Modern Approach offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781537600314
Category :
Languages : en
Pages : 626
Book Description
Artificial Intelligence: A Modern Approach offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence.
The Handbook of Artificial Intelligence
Author: Avron Barr
Publisher: Butterworth-Heinemann
ISBN: 1483214389
Category : Mathematics
Languages : en
Pages : 443
Book Description
The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine and education, including ICAI systems design, intelligent CAI systems, medical systems, and other applications of AI to education. The manuscript explores automatic programming, as well as the methods of program specification, basic approaches, and automatic programming systems. The book is a valuable source of data for computer science experts and researchers interested in conducting further research in artificial intelligence.
Publisher: Butterworth-Heinemann
ISBN: 1483214389
Category : Mathematics
Languages : en
Pages : 443
Book Description
The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine and education, including ICAI systems design, intelligent CAI systems, medical systems, and other applications of AI to education. The manuscript explores automatic programming, as well as the methods of program specification, basic approaches, and automatic programming systems. The book is a valuable source of data for computer science experts and researchers interested in conducting further research in artificial intelligence.
Introducing Artificial Intelligence
Author: Henry Brighton
Publisher: Totem Books
ISBN: 9781840468410
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
Can machines really think? Is the mind just a complicated computer program? Half a century of research into Artificial Intelligence has resulted in machines capable of beating the best human chess players and humanoid robots that can walk and interact with us. Yet exactly should we go about building a truly intelligent machine? Introducing Artificial Intelligence focuses on the major issues behind one of the hardest scientific problems ever undertaken.
Publisher: Totem Books
ISBN: 9781840468410
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
Can machines really think? Is the mind just a complicated computer program? Half a century of research into Artificial Intelligence has resulted in machines capable of beating the best human chess players and humanoid robots that can walk and interact with us. Yet exactly should we go about building a truly intelligent machine? Introducing Artificial Intelligence focuses on the major issues behind one of the hardest scientific problems ever undertaken.
Competing in the Age of AI
Author: Marco Iansiti
Publisher: Harvard Business Press
ISBN: 1633697630
Category : Business & Economics
Languages : en
Pages : 175
Book Description
"a provocative new book" — The New York Times AI-centric organizations exhibit a new operating architecture, redefining how they create, capture, share, and deliver value. Now with a new preface that explores how the coronavirus crisis compelled organizations such as Massachusetts General Hospital, Verizon, and IKEA to transform themselves with remarkable speed, Marco Iansiti and Karim R. Lakhani show how reinventing the firm around data, analytics, and AI removes traditional constraints on scale, scope, and learning that have restricted business growth for hundreds of years. From Airbnb to Ant Financial, Microsoft to Amazon, research shows how AI-driven processes are vastly more scalable than traditional processes, allow massive scope increase, enabling companies to straddle industry boundaries, and create powerful opportunities for learning—to drive ever more accurate, complex, and sophisticated predictions. When traditional operating constraints are removed, strategy becomes a whole new game, one whose rules and likely outcomes this book will make clear. Iansiti and Lakhani: Present a framework for rethinking business and operating models Explain how "collisions" between AI-driven/digital and traditional/analog firms are reshaping competition, altering the structure of our economy, and forcing traditional companies to rearchitect their operating models Explain the opportunities and risks created by digital firms Describe the new challenges and responsibilities for the leaders of both digital and traditional firms Packed with examples—including many from the most powerful and innovative global, AI-driven competitors—and based on research in hundreds of firms across many sectors, this is your essential guide for rethinking how your firm competes and operates in the era of AI.
Publisher: Harvard Business Press
ISBN: 1633697630
Category : Business & Economics
Languages : en
Pages : 175
Book Description
"a provocative new book" — The New York Times AI-centric organizations exhibit a new operating architecture, redefining how they create, capture, share, and deliver value. Now with a new preface that explores how the coronavirus crisis compelled organizations such as Massachusetts General Hospital, Verizon, and IKEA to transform themselves with remarkable speed, Marco Iansiti and Karim R. Lakhani show how reinventing the firm around data, analytics, and AI removes traditional constraints on scale, scope, and learning that have restricted business growth for hundreds of years. From Airbnb to Ant Financial, Microsoft to Amazon, research shows how AI-driven processes are vastly more scalable than traditional processes, allow massive scope increase, enabling companies to straddle industry boundaries, and create powerful opportunities for learning—to drive ever more accurate, complex, and sophisticated predictions. When traditional operating constraints are removed, strategy becomes a whole new game, one whose rules and likely outcomes this book will make clear. Iansiti and Lakhani: Present a framework for rethinking business and operating models Explain how "collisions" between AI-driven/digital and traditional/analog firms are reshaping competition, altering the structure of our economy, and forcing traditional companies to rearchitect their operating models Explain the opportunities and risks created by digital firms Describe the new challenges and responsibilities for the leaders of both digital and traditional firms Packed with examples—including many from the most powerful and innovative global, AI-driven competitors—and based on research in hundreds of firms across many sectors, this is your essential guide for rethinking how your firm competes and operates in the era of AI.
A Beginner's Guide to Introduce Artificial Intelligence in Teaching and Learning
Author: Muralidhar Kurni
Publisher: Springer Nature
ISBN: 3031326539
Category : Education
Languages : en
Pages : 236
Book Description
This book reimagines education in today’s Artificial Intelligence (AI) world and the Fourth Industrial Revolution. Artificial intelligence will drastically affect every industry and sector, and education is no exception. This book aims at how AI may impact the teaching and learning process in education. This book is designed to demystify AI for teachers and learners. This book will help improve education and support institutions in the phenomena of the emergence of AI in teaching and learning. This book presents a comprehensive study of how AI improves teaching and learning, from AI-based learning platforms to AI-assisted proctored examinations. This book provides educators, learners, and administrators on how AI makes sense in their everyday practice. Describing the application of AI in ten key aspects, this comprehensive volume prepares educational leaders, designers, researchers, and policymakers to effectively rethink the teaching and learning process and environments that students need to thrive. The readers of this book never fall behind the fast pace and promising innovations of today’s most advanced learning technology.
Publisher: Springer Nature
ISBN: 3031326539
Category : Education
Languages : en
Pages : 236
Book Description
This book reimagines education in today’s Artificial Intelligence (AI) world and the Fourth Industrial Revolution. Artificial intelligence will drastically affect every industry and sector, and education is no exception. This book aims at how AI may impact the teaching and learning process in education. This book is designed to demystify AI for teachers and learners. This book will help improve education and support institutions in the phenomena of the emergence of AI in teaching and learning. This book presents a comprehensive study of how AI improves teaching and learning, from AI-based learning platforms to AI-assisted proctored examinations. This book provides educators, learners, and administrators on how AI makes sense in their everyday practice. Describing the application of AI in ten key aspects, this comprehensive volume prepares educational leaders, designers, researchers, and policymakers to effectively rethink the teaching and learning process and environments that students need to thrive. The readers of this book never fall behind the fast pace and promising innovations of today’s most advanced learning technology.