Study of Polycrystalline Diamond Thin Films Grown in a Custom Built ECR PE-CVD System PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Study of Polycrystalline Diamond Thin Films Grown in a Custom Built ECR PE-CVD System PDF full book. Access full book title Study of Polycrystalline Diamond Thin Films Grown in a Custom Built ECR PE-CVD System by Vidhya Sagar Jayaseelan. Download full books in PDF and EPUB format.

Study of Polycrystalline Diamond Thin Films Grown in a Custom Built ECR PE-CVD System

Study of Polycrystalline Diamond Thin Films Grown in a Custom Built ECR PE-CVD System PDF Author: Vidhya Sagar Jayaseelan
Publisher:
ISBN:
Category :
Languages : en
Pages : 212

Book Description
The increasing importance of high temperature electronics has necessitated a search for new materials. Silicon provides low reliability or fails to function altogether at elevated (>500F /260(C) temperatures. Diamond, being a wide-band-gap semiconductor, is a very promising candidate for these applications as well as others that function in adverse conditions. However, the present day diamond film technology, with respect to quality and consistency of properties of the films, has not seen the advancement required for its commercial application. This research is an effort to investigate the growth of diamond thin films to enable their application for advanced electronic devices. The first objective of the research was to construct a state of the art Electron Cyclotron Resonance Microwave Plasma Chemical Vapor Deposition (ECR-MPCVD) system for processing diamond and diamond like materials. Such a facility is the most advanced and powerful tool for CVD of poly-crystalline diamond and cubic Boron Nitride. Important factors like ease of operation and maintenance, stability and reproducibility of process conditions, reliability, safety, cost etc were considered while constructing the machine. The system was subjected to a series of tests to ensure that these factors were adequately satisfied. The second objective of this project was to grow polycrystalline diamond films under various conditions of chamber pressure, substrate temperature, hydrogen flow rate, composition and substrate pretreatment. The properties of the films grown under these conditions were evaluated by various modern characterization techniques such as optical microscopy, scanning electron microscopy, Raman spectroscopy and X-ray diffraction. Optical microscopy is an inexpensive, quick and effective method for initial evaluation of the uniformity and general morphology of the films obtained. Scanning electron microscopy gives information about the grain size, thickness, growth rate, uniformity, faceting, roughness, and continuous nature of the film. Raman spectroscopy is probably the most important characterization method for diamond films for electronic applications. It helps to identify the presence of diamond and the nature of the film. Raman spectrum is used to evaluate the quality of the diamond grains in the film, defect concentration and crystallinity. It also gives information about the presence of the non-diamond graphite phase and hence indirectly the intrinsic conductivity. XRD is also a positive identification tool. It was also used to derive information about the grain orientation with respect to the silicon substrate. The properties of the films obtained were correlated with the growth parameters and conclusions were drawn about the effect of these parameters on the film properties. This also helped in the characterization of the MPCVD reactor and in determining an effective range of parameters for future studies on the selective growth, long term growth, or growth of films with oxygen addition to the precursor.

Study of Polycrystalline Diamond Thin Films Grown in a Custom Built ECR PE-CVD System

Study of Polycrystalline Diamond Thin Films Grown in a Custom Built ECR PE-CVD System PDF Author: Vidhya Sagar Jayaseelan
Publisher:
ISBN:
Category :
Languages : en
Pages : 212

Book Description
The increasing importance of high temperature electronics has necessitated a search for new materials. Silicon provides low reliability or fails to function altogether at elevated (>500F /260(C) temperatures. Diamond, being a wide-band-gap semiconductor, is a very promising candidate for these applications as well as others that function in adverse conditions. However, the present day diamond film technology, with respect to quality and consistency of properties of the films, has not seen the advancement required for its commercial application. This research is an effort to investigate the growth of diamond thin films to enable their application for advanced electronic devices. The first objective of the research was to construct a state of the art Electron Cyclotron Resonance Microwave Plasma Chemical Vapor Deposition (ECR-MPCVD) system for processing diamond and diamond like materials. Such a facility is the most advanced and powerful tool for CVD of poly-crystalline diamond and cubic Boron Nitride. Important factors like ease of operation and maintenance, stability and reproducibility of process conditions, reliability, safety, cost etc were considered while constructing the machine. The system was subjected to a series of tests to ensure that these factors were adequately satisfied. The second objective of this project was to grow polycrystalline diamond films under various conditions of chamber pressure, substrate temperature, hydrogen flow rate, composition and substrate pretreatment. The properties of the films grown under these conditions were evaluated by various modern characterization techniques such as optical microscopy, scanning electron microscopy, Raman spectroscopy and X-ray diffraction. Optical microscopy is an inexpensive, quick and effective method for initial evaluation of the uniformity and general morphology of the films obtained. Scanning electron microscopy gives information about the grain size, thickness, growth rate, uniformity, faceting, roughness, and continuous nature of the film. Raman spectroscopy is probably the most important characterization method for diamond films for electronic applications. It helps to identify the presence of diamond and the nature of the film. Raman spectrum is used to evaluate the quality of the diamond grains in the film, defect concentration and crystallinity. It also gives information about the presence of the non-diamond graphite phase and hence indirectly the intrinsic conductivity. XRD is also a positive identification tool. It was also used to derive information about the grain orientation with respect to the silicon substrate. The properties of the films obtained were correlated with the growth parameters and conclusions were drawn about the effect of these parameters on the film properties. This also helped in the characterization of the MPCVD reactor and in determining an effective range of parameters for future studies on the selective growth, long term growth, or growth of films with oxygen addition to the precursor.

Innovative Processing and Synthesis of Ceramics, Glasses, and Composites VI

Innovative Processing and Synthesis of Ceramics, Glasses, and Composites VI PDF Author: Narottam P. Bansal
Publisher: John Wiley & Sons
ISBN: 1118380819
Category : Technology & Engineering
Languages : en
Pages : 262

Book Description
This collection of papers describes the various innovative techniques and approaches for synthesis and processing of novel ceramics, glass, and composite materials and their fabrication in various forms, shapes, and complex structures. Special emphasis is given to state-of-the-art methods such as reaction bonding, microwave, CVD, CVI, electrophoresis, sol-gel, plasma, combustion, and more. Proceedings of the symposium held at the 104th Annual Meeting of The American Ceramic Society, April 28-May1, 2002 in Missouri; Ceramic Transactions, Volume 135.

Chemical Vapor Deposited Boron Doped Polycrystalline Diamond Thin Film Growth on Silicon and Sapphire Growth, Doping, Metallization, and Characterization

Chemical Vapor Deposited Boron Doped Polycrystalline Diamond Thin Film Growth on Silicon and Sapphire Growth, Doping, Metallization, and Characterization PDF Author: Hassan Golestanian
Publisher:
ISBN:
Category : Chemical vapor deposition
Languages : en
Pages : 272

Book Description
Diamond's unique properties are potentially superior among the existing substrate materials for electronic applications. Among these properties, diamond's physical hardness, molar density, thermal conductivity, and sound velocity are the highest while its thermal expansion coefficient, compressibility, and bulk modules are the lowest. Because of this unique combination of properties, diamond has diverse applications in electronics, optics, and material coatings. Scientists around the world have been studying possible applications of diamond and its synthesis by chemical vapor deposition (CVD) in the semiconductor industry for almost the latter half of this century. The use of bulk crystals severely limits semiconductor applications of diamond due to difficulty in doping, device integration, high cost, and small area of bulk diamond. Therefore, a great deal of effort has been undertaken by researchers around the world on diamond synthesis by chemical vapor deposition (CVD). With some of the same limitations, homoepitaxial growth of diamond is not considered to be a feasible solution. As a result, heteroepitaxial growth of diamond is being considered to be an attractive possibility. Heteroepitaxial diamond growth has been the main subject of research since the first successful growth of diamond thin films on foreign substrates was reported. Polycrystalline and highly oriented diamond thin films grown on various substrates, especially silicon, have been reported over the years. There also have been reports of device fabrication on diamond such as diamond based point contact transistors, Schottky diodes, and field effect transistors at a laboratory level. The technology has been very challenging and there remain many obstacles to overcome before diamond based devices are to become part of the semiconductor industry. For example, epitaxial growth of CVD diamond, selective doping, n-type doping, and metallization of the grown films are not totally understood due to the polycrystalline nature of CVD diamond films. The objective of this work is the study of hot-filament chemical vapor deposited boron doped polycrystalline diamond thin films grown on both silicon and sapphire. A new horizontal gas flow configuration rather than the typical vertical gas flow configuration is utilized to provide larger area and better quality films grown on these substrates. The study includes characterization of grown films using scanning electron microscopy, Raman spectroscopy, X-ray diffraction analysis, and electrical characterization. Two types of contacts to the films grown on silicon substrates are fabricated enabling various electrical measurements. However, on sapphire substrates, low volume resistivity diamond films are grown despite severe adhesion problems. The effects of various substrate pre-treatments, growth conditions, and doping concentrations are presented.

Thin Films by Chemical Vapour Deposition

Thin Films by Chemical Vapour Deposition PDF Author: C.E. Morosanu
Publisher: Elsevier
ISBN: 1483291731
Category : Technology & Engineering
Languages : en
Pages : 720

Book Description
The explosive growth in the semiconductor industry has caused a rapid evolution of thin film materials that lend themselves to the fabrication of state-of-the-art semiconductor devices. Early in the 1960s an old research technique named chemical vapour phase deposition (CVD), which has several unique advantages, developed into the most widely used technique for thin film preparation in electronics technology. In the last 25 years, tremendous advances have been made in the science and technology of thin films prepared by means of CVD. This book presents in a single volume, an up-to-date overview of the important field of CVD processes which has never been completely reviewed previously. Contents: Part I. 1. Evolution of CVD Films. Introductory remarks. Short history of CVD thin films. II. Fundamentals. 2. Techniques of Preparing Thin Films. Electrolytic deposition techniques. Vacuum deposition techniques. Plasma deposition techniques. Liquid-phase deposition techniques. Solid-phase deposition techniques. Chemical vapour conversion of substrate. Chemical vapour deposition. Comparison between CVD and other thin film deposition techniques. 3. Chemical Processes Used in CVD. Introduction. Description of chemical reactions used in CVD. 4. Thermodynamics of CVD. Feasibility of a CVD process. Techniques for equilibrium calculations in CVD systems. Examples of thermodynamic studies of CVD systems. 5. Kinetics of CVD. Steps and control type of a CVD heterogeneous reaction. Influence of experimental parameters on thin film deposition rate. Continuous measurement of the deposition rate. Experimental methods for studying CVD kinetics. Role of homogeneous reactions in CVD. Mechanism of CVD processes. Kinetics and mechanism of dopant incorporation. Transport phenomena in CVD. Status of kinetic and mechanism investigations in CVD systems. 6. Measurement of Thin Film Thickness. Mechanical methods. Mechanical-optical methods. Optical methods. Electrical methods. Miscellaneous methods. 7. Nucleation and Growth of CVD Films. Stages in the nucleation and growth mechanism. Regimes of nucleation and growth. Nucleation theory. Dependence of nucleation on deposition parameters. Heterogeneous nucleation and CVD film structural forms. Homogeneous nucleation. Experimental techniques. Experimental results of CVD film nucleation. 8. Thin Film Structure. Techniques for studying thin film structure. Structural defects in CVD thin films. 9. Analysis of CVD Films. Analysis techniques of thin film bulk. Analysis techniques of thin film surfaces. Film composition measurement. Depth concentration profiling. 10. Properties of CVD Films. Mechanical properties. Thermal properties. Optical properties. Photoelectric properties. Electrical properties. Magnetic properties. Chemical properties. Part III. 11. Equipment and Substrates. Equipment for CVD. Safety in CVD. Substrates. 12. Preparation and Properties of Semiconducting Thin Films. Homoepitaxial semiconducting films. Heteroepitaxial semiconducting films. 13. Preparation and Properties of Amorphous Insulating Thin Films. Oxides. Nitrides and Oxynitrides. Polymeric thin films. 14. Preparation and Properties of Conductive Thin Films. Metals and metal alloys. Resistor materials. Transparent conducting films. Miscellaneous materials. 15. Preparation and Properties of Superconducting and Magnetic Thin Films. Superconducting materials. Magnetic materials. 16. Uses of CVD Thin Films. Applications in electronics and microelectronics. Applications in the field of microwaves and optoelectronics. Miscellaneous applications. Artificial heterostructures (Quantum wells, superlattices, monolayers, two-dimensional electron gases). Part V. 17. Present and Future Importance of CVD Films.

Growth and Characterization of Diamond Thin Films

Growth and Characterization of Diamond Thin Films PDF Author: Sattar Mirzakuchaki
Publisher:
ISBN:
Category : Diamond thin films
Languages : en
Pages : 272

Book Description
Chemical vapor deposited (CVD) diamond thin films grown homoepitaxially as well as on non-diamond substrates have been the subject of intense investigation since the beginning of the last decade. Diamond's remarkable properties such as physical hardness, chemical inertness, high thermal conductivity, high breakdown voltage, and high carrier mobility are the main factors for the attention it has received from many researchers around the world. Although these properties are somewhat degraded in polycrystalline diamond films, they are still superior to many other materials. One of the most potentially useful applications of diamond thin films is in the semiconductor industry. Although a few prototype devices such as field effect transistors and Schottky diodes have been fabricated on diamond, some major obstacles remain to be overcome before full scale commercial applications of diamond as a semiconductor is possible. The high cost of large area monocrystalline diamond substrates has forced researchers to look for alternative substrates for the heteroepitaxial growth of diamond. So far only marginal results have been reported on the growth of highly oriented diamond films and on the heteroepitaxial growth involving substrates that are as costly as diamond. Silicon, as the dominant material in semiconductor industry, has been the subject of much research as a substrate for the growth of polycrystalline diamond. Another problem in development of diamond as a semiconductor is the effective doping of diamond, particularly for n-type conductivity. Although many researchers have studied boron-doped (p-type) diamond thin films in the past several years, there have been few reports on the effects of doping diamond films with phosphorous (n-type). Once these two issues have been solved, other fabrication steps such as oxidation, etching, masking, etc. may be attempted. The present work is a study directed toward solving some of these problems by looking at in-situ doping of n-type hot filament CVD (HFCVD) grown diamond films on silicon substrates. The study includes electrical characterization, stable metallic contacts, effect of silicon substrate surface pretreatment, and selective area deposition. A number of different techniques for inducing diamond nucleation on Si substrates are studied and the resulting diamond films characterized by common techniques such as Raman spectroscopy, X-ray diffraction, optical and scanning electron microscopy, and profilometery. The effect of doping the diamond films with different concentrations of phosphorous as well as calculation of the activation energy by temperature measurement was also carried out in this work. A new technique is presented for the selective deposition of diamond films onto silicon substrates.

Diamond Films

Diamond Films PDF Author: Koji Kobashi
Publisher: Elsevier
ISBN: 0080525571
Category : Science
Languages : en
Pages : 350

Book Description
- Discusses the most advanced techniques for diamond growth - Assists diamond researchers in deciding on the most suitable process conditions - Inspires readers to devise new CVD (chemical vapor deposition Ever since the early 1980s, and the discovery of the vapour growth methods of diamond film, heteroexpitaxial growth has become one of the most important and heavily discussed topics amongst the diamond research community. Kobashi has documented such discussions with a strong focus on how diamond films can be best utilised as an industrial material, working from the premise that crystal diamond films can be made by chemical vapour disposition. Kobashi provides information on the process and characterization technologies of oriented and heteroepitaxial growth of diamond films.

Growth and Characterization of Polycrystalline Silicon and Microcrystalline Silicon Carbide Thin Films Using ECR-PECVD

Growth and Characterization of Polycrystalline Silicon and Microcrystalline Silicon Carbide Thin Films Using ECR-PECVD PDF Author: Bryan Kent Oliver
Publisher:
ISBN:
Category :
Languages : en
Pages : 138

Book Description
On the other hand, with He dilution at 15 mTorr the percent crystallinity obtained was also 86%, with decreasing crystallinity at lower pressures. We found that a dilution consisting of a 50%-50% mixture of H2-He, which allows a high ion bombardment deposition from the helium that is also benefited by the hydrogen etching effect, did not compromise the quality of the films. This plasma selection produced about 84% crystalline films, independent of the pressure setting. X-ray diffraction reveals the dominant crystal textures are 111 and 220 orientations, with 220 preferential growth at higher deposition pressures. The CH4/SiH4 flow ratio was found critical to the formation of microcrystalline SiC.

Thin-Film Diamond I

Thin-Film Diamond I PDF Author: Christopher Nebel
Publisher: Academic Press
ISBN: 0080541038
Category : Technology & Engineering
Languages : en
Pages : 481

Book Description
This volume reviews the state of the art of thin film diamond, a very promising new semiconductor that may one day rival silicon as the material of choice for electronics. Diamond has the following important characteristics; it is resistant to radiation damage, chemically inert and biocompatible and it will become "the material" for bio-electronics, in-vivo applications, radiation detectors and high-frequency devices. Thin-Film Diamond is the first book to summarize state of the art of CVD diamond in depth. It covers the most recent results regarding growth and structural properties, doping and defect characterization, hydrogen in and on diamond as well as surface properties in general, applications of diamond in electrochemistry, as detectors, and in surface acoustic wave devices.· Accessible by both experts and non-experts in the field of semi-conductors research and technology, each chapter is written in a tutorial format· Helping engineers to manufacture devices with optimized electronic properties· Truly international, this volume contains chapters written by recognized experts representing academic and industrial institutions from Europe, Japan and the US

Diamond Thin Films - An Emerging Technology: Past, Present and Future

Diamond Thin Films - An Emerging Technology: Past, Present and Future PDF Author: Ashok Kumar Dua
Publisher: Trans Tech Publications Ltd
ISBN: 3035706352
Category : Technology & Engineering
Languages : en
Pages : 110

Book Description
Diamond, as well as being a precious gem, is a versatile material par excellence. No other material comes anywhere near to matching its properties, which are both extreme, and also expressed in rare combinations. However, natural diamonds, and those synthesised under high sandpressure temperatures, are too expensive or small for many technological applications. These limitations can be overcome by using large-area diamond coatings; chemically bonded to inexpensive non-diamond surfaces. The consequent economic advantages provide the driving force for much diamond-related research and technology.

A Study of the Factors Influencing the Morphology of Diamond Thin Films Grown Via Hot Filament Chemical Vapor Deposition

A Study of the Factors Influencing the Morphology of Diamond Thin Films Grown Via Hot Filament Chemical Vapor Deposition PDF Author: Prabhjot Mehta
Publisher:
ISBN:
Category :
Languages : en
Pages : 456

Book Description