Study for the Numerical Resolution of Combustion Phenomena in Burners PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Study for the Numerical Resolution of Combustion Phenomena in Burners PDF full book. Access full book title Study for the Numerical Resolution of Combustion Phenomena in Burners by Èric Godayol Capdevila. Download full books in PDF and EPUB format.

Study for the Numerical Resolution of Combustion Phenomena in Burners

Study for the Numerical Resolution of Combustion Phenomena in Burners PDF Author: Èric Godayol Capdevila
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Combustion is a complex phenomenon of interest that combines chemical reactions and turbulent flows. Resolution of both problems is a difficult task. On the one hand, chemical reactions introduce a large amount of species with different properties and small temporal scales due to chemical kinetics. On the other hand, turbulent flows imply a large span of spatial scales. Different models are commonly applied to reduce these requirements. Chemical reactions can be modeled with reduced chemical mechanisms. These have less species and reactions than complex ones, but are able to describe the combustion. Turbulence is modeled by means of Large Eddy Simulation (LES), which filters the Navier-Stokes equations spatially. Thus, the small scales of the flow are filtered out. These ones are modeled through a turbulent viscosity. The present study focuses on the theoretical basis required to model combustion phenomena. First, the algorithm used to solve variable density flows is presented. It uses the low-Mach equations, which are discretized in terms of the convective-diffusive equation. Its resolution is achieved by applying an algorithm based on a projection method, using a predictor-corrector step. Then the algorithm used to solve chemical kinetics is detailed. In this case, the Arrhenius law is used for laminar flames and a two equations model for turbulent flows. The latter introduces an eddy dissipation model besides the Arrhenius law to include the effect of the filtered spatial scales in LES simulations. The study concludes with an introduction to LES. The spatial filter introduces some additional terms in the governing equations. These ones are modeled through a turbulent viscosity. Different models to evaluate the turbulent viscosity can be found in the literature. In the present study the Smagorinsky model is used. Different tests are carried out to verify the results. The lid driven cavity and the heated cavity tests show that accurate results are obtained for incompressible and variable density non-reacting flows. A laminar methane/air flame test is used to verify the laminar chemical algorithm. Additionally, the influence of chemical mechanism on the flame behavior is shown. Finally, a three dimensional propane burner is simulated to study the turbulent combustion phenomena and verify the interaction between turbulent combustion chemical algorithm and LES. An additional test is used to assess the speedup of the parallelization implemented and also to check its performance.

Study for the Numerical Resolution of Combustion Phenomena in Burners

Study for the Numerical Resolution of Combustion Phenomena in Burners PDF Author: Èric Godayol Capdevila
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Combustion is a complex phenomenon of interest that combines chemical reactions and turbulent flows. Resolution of both problems is a difficult task. On the one hand, chemical reactions introduce a large amount of species with different properties and small temporal scales due to chemical kinetics. On the other hand, turbulent flows imply a large span of spatial scales. Different models are commonly applied to reduce these requirements. Chemical reactions can be modeled with reduced chemical mechanisms. These have less species and reactions than complex ones, but are able to describe the combustion. Turbulence is modeled by means of Large Eddy Simulation (LES), which filters the Navier-Stokes equations spatially. Thus, the small scales of the flow are filtered out. These ones are modeled through a turbulent viscosity. The present study focuses on the theoretical basis required to model combustion phenomena. First, the algorithm used to solve variable density flows is presented. It uses the low-Mach equations, which are discretized in terms of the convective-diffusive equation. Its resolution is achieved by applying an algorithm based on a projection method, using a predictor-corrector step. Then the algorithm used to solve chemical kinetics is detailed. In this case, the Arrhenius law is used for laminar flames and a two equations model for turbulent flows. The latter introduces an eddy dissipation model besides the Arrhenius law to include the effect of the filtered spatial scales in LES simulations. The study concludes with an introduction to LES. The spatial filter introduces some additional terms in the governing equations. These ones are modeled through a turbulent viscosity. Different models to evaluate the turbulent viscosity can be found in the literature. In the present study the Smagorinsky model is used. Different tests are carried out to verify the results. The lid driven cavity and the heated cavity tests show that accurate results are obtained for incompressible and variable density non-reacting flows. A laminar methane/air flame test is used to verify the laminar chemical algorithm. Additionally, the influence of chemical mechanism on the flame behavior is shown. Finally, a three dimensional propane burner is simulated to study the turbulent combustion phenomena and verify the interaction between turbulent combustion chemical algorithm and LES. An additional test is used to assess the speedup of the parallelization implemented and also to check its performance.

Combustion Phenomena

Combustion Phenomena PDF Author: Jozef Jarosinski
Publisher: CRC Press
ISBN: 0849384095
Category : Science
Languages : en
Pages : 236

Book Description
Extensively using experimental and numerical illustrations, CombustionPhenomena: Selected Mechanisms of Flame Formation, Propagation, and Extinction provides a comprehensive survey of the fundamental processes of flame formation, propagation, and extinction. Taking you through the stages of combustion, leading experts visually display, mathematically explain, and clearly theorize on important physical topics of combustion. After a historical introduction to the field, they discuss combustion chemistry, flammability limits, and spark ignition. They also study counterflow twin-flame configuration, flame in a vortex core, the propagation characteristics of edge flames, instabilities, and tulip flames. In addition, the book describes flame extinction in narrow channels, global quenching of premixed flames by turbulence, counterflow premixed flame extinction limits, the interaction of flames with fluids in rotating vessels, and turbulent flames. The final chapter explores diffusion flames as well as combustion in spark- and compression-ignition engines. It also examines the transition from deflagration to detonation, along with the detonation wave structure. With downloadable resources of images that beautifully illustrate a range of combustion phenomena, this book facilitates a practical understanding of the processes occurring in the conception, spread, and extinguishment of a flame. It will help you on your way to finding solutions to real issues encountered in transportation, power generation, industrial processes, chemical engineering, and fire and explosion hazards.

Turbulent Combustion Modeling

Turbulent Combustion Modeling PDF Author: Tarek Echekki
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496

Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Transport Phenomena In Combustion

Transport Phenomena In Combustion PDF Author: SH Chan
Publisher: Taylor & Francis
ISBN: 1351407007
Category : Technology & Engineering
Languages : en
Pages : 1862

Book Description
This two-volume set presents the proceedings from the 8th International Symposium on Transport Phenomena in Combustion. There are more than 150 chapters that provide an extensive review of topics such as complete numerical simulation of combustion and heat transfer in furnaces and boilers, the interaction of combustion and heat transfer in porous media for low emission, high efficiency applications, industrial combustion technology, experimental and diagnostic methods and active combustion control, and fire research, internal combustion engine, Nox and soot emission.

A numerical study of combustion within a porous inert medium burner

A numerical study of combustion within a porous inert medium burner PDF Author: In-Gweon Lim
Publisher:
ISBN:
Category : Combustion
Languages : en
Pages : 404

Book Description


Inventory of advanced energy technologies and energy conservation research and development, 1976-1978

Inventory of advanced energy technologies and energy conservation research and development, 1976-1978 PDF Author: Oak Ridge National Laboratory
Publisher:
ISBN:
Category : Energy conservation
Languages : en
Pages : 2238

Book Description


Theory of Solid-Propellant Nonsteady Combustion

Theory of Solid-Propellant Nonsteady Combustion PDF Author: Vasily B. Novozhilov
Publisher: John Wiley & Sons
ISBN: 1119525586
Category : Technology & Engineering
Languages : en
Pages : 352

Book Description
Despite significant developments and widespread theoretical and practical interest in the area of Solid-Propellant Nonsteady Combustion for the last fifty years, a comprehensive and authoritative text on the subject has not been available. Theory of Solid-Propellant Nonsteady Combustion fills this gap by summarizing theoretical approaches to the problem within the framework of the Zeldovich-Novozhilov (ZN-) theory. This book contains equations governing unsteady combustion and applies them systematically to a wide range of problems of practical interest. Theory conclusions are validated, as much as possible, against available experimental data. Theory of Solid-Propellant Nonsteady Combustion provides an accurate up-to-date account and perspectives on the subject and is also accompanied by a website hosting solutions to problems in the book.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 376

Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Advanced Combustion Science

Advanced Combustion Science PDF Author: Tsuneo Someya
Publisher: Springer Science & Business Media
ISBN: 4431682287
Category : Science
Languages : en
Pages : 332

Book Description
Non-uniform combustion, as encountered in diesel and gas turbine engines, furnaces, and boilers, is responsible for the conversion of fossil fuel to energy and also for the corresponding formation of pollutants. In spite of great research efforts in the past, the mechanism of non-uniform combustion has remained less explored than that of other combustion types, since it consists of many, mostly transient processes which influence each other. In view of this background, a group research project, "Exploration of Combustion Mechanism", was established to explore the mechanism of combustion, especially that of diffusive combustion, and also to find efficient ways to control the combustion process for better utilization of fuel and the reduction of pollutant emission. The group research was started, after preparatory activity of 2 years, in April 1988, for a period of 3 years, as a project with a Grant-in-Aid for Scientific Research of Priority Area subsidized by the Ministry of Education, Science and Culture of Japan. The entire group of 43 members was set up as an organizing committee of 13 members, and five research groups, consisting of 36 members. The research groups were: (1) Steady combustion, (2) Unsteady spray combustion, (3) Control of combustion, (4) Chemistry of combustion, and (5) Effects of fuels. At the beginning of the project it was agreed that we should pursue the mechanism of combustion from a scientific viewpoint, namely, the target of the project was to obtain the fundamentals, or "know why", rather than "know how" of combustion.

Three-dimensional Numerical Study on the Combustion Flow in an After-burner

Three-dimensional Numerical Study on the Combustion Flow in an After-burner PDF Author: Hong Liu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description