Studies in Lunar Geology and Geochemistry Using Sample Analysis and Remote Sensing Measurements PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Studies in Lunar Geology and Geochemistry Using Sample Analysis and Remote Sensing Measurements PDF full book. Access full book title Studies in Lunar Geology and Geochemistry Using Sample Analysis and Remote Sensing Measurements by . Download full books in PDF and EPUB format.

Studies in Lunar Geology and Geochemistry Using Sample Analysis and Remote Sensing Measurements

Studies in Lunar Geology and Geochemistry Using Sample Analysis and Remote Sensing Measurements PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 572

Book Description


Studies in Lunar Geology and Geochemistry Using Sample Analysis and Remote Sensing Measurements

Studies in Lunar Geology and Geochemistry Using Sample Analysis and Remote Sensing Measurements PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 572

Book Description


Remote Compositional Analysis

Remote Compositional Analysis PDF Author: Janice L. Bishop
Publisher: Cambridge University Press
ISBN: 110718620X
Category : Language Arts & Disciplines
Languages : en
Pages : 655

Book Description
Comprehensive overview of the spectroscopic, mineralogical, and geochemical techniques used in planetary remote sensing.

Geochemical Exploration of the Moon and Planets

Geochemical Exploration of the Moon and Planets PDF Author: I. Adler
Publisher: Springer Science & Business Media
ISBN: 3642492789
Category : Science
Languages : en
Pages : 252

Book Description
This book presents a review of those efforts that have been and are being made to determine the geochemical composition of the moon and planets. The authors have attempted to present both a review as well as their philosophy about the development of flight experiments for geo chemical studies. Their basic premise is that such flight experiments should emphasize the scientific objectives and a total systems approach to meeting these objectives, involving the analytical device, data handling and data interpretation. While the above seems reasonably obvious, many proposals of experiments often tend to begin with an instrument with too little concern about the constraints imposed and whether the data that can be obtained are sufficiently useful to meet the scientific objectives. This book covers the accomplishments in space science exploration, bearing on the history and composition ofthe solar system. 'It also covers the rationale behind the lunar and planetary exploration program. The latter part of the book is concerned with future plans for lunar and planetary exploration instrumentation and techniques in various stages of development. There is an exposition of the methods of remote analysis of the moon and planets, including some concepts developed by the authors as a result of their long term involvement with the space program, from its early inception to the present day preparation for remote geochemical analysis in the Apollo, Mariner and Viking missions.

Investigation and Classification of Planetary Materials and Surfaces Using Novel Methods to Analyze Large Compositional Datasets

Investigation and Classification of Planetary Materials and Surfaces Using Novel Methods to Analyze Large Compositional Datasets PDF Author: Timothy M. Hahn (Jr)
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 163

Book Description
Our understanding of planetary bodies and their surfaces originates from measurements made by spacecraft instruments and laboratory analysis of extraterrestrial materials. Integration of these datasets can significantly advance the fields of planetary geology and geochemistry. The goal of my dissertation research has been to develop novel methods for interrogating extraterrestrial samples and planetary regoliths, with an emphasis on integrating these complementary datasets. Additionally, my research has focused on utilizing 'big data' within the geoscience and planetary science communities, whether that data be geospatial or geochemical in nature. My dissertation research involves two separate, but related projects: (1) coupling Apollo 17 sample analyses with orbital observations from the Lunar Reconnaissance Orbiter Camera (LROC); and (2) development of quantitative compositional mapping (QCM) and lithologic mapping (LM) techniques using the electron microprobe, with specific applications demonstrated using vestan and lunar meteorites.For the Apollo 17 photometry research, the effects of composition, surface maturity, mineralogy, and glass content on the photometric properties of the lunar surface were investigated using Apollo 17 soil compositions as ground truth. A regional Hapke photometric parameter map of Taurus-Littrow Valley (TLV) on the Moon was produced and provides information about the photometric properties of the lunar regolith at a pixel scale of ~5 mpp. Finally, an empirical calibration was developed to relate the photometric properties (e.g., single scattering albedo) of the surface to the mafic content of Apollo 17 soils (wt.% MgO+FeO+TiO2). This relationship was used to generate a regional, topography-corrected compositional map of the TLV at high-resolution (~5 meters per pixel; mpp). Specifically, LROC Narrow Angle Camera (NAC) images were combined with NAC-derived digital terrain models to solve for photometric parameters by taking local illumination geometry into account, and thus allowing photometric parameters to be determined at a pixel scale of NAC DTMs (~5 meters per pixel). Locations of the Apollo samples and Lunar Roving Vehicle (LRV) stations, along with physiochemical information of soils collected from those stations, were used to precisely located each sample in NAC images, and to determine the correlation between the single scattering albedo and various measures of composition such as the alumina (Al2O3) content, which corresponds to high-albedo anorthositic components, or the mafic index (FeO+MgO+TiO2), which corresponds to the low-albedo mafic mineral components. The strongest correlation was observed for the mature soils, presumably because the soil maturation process breaks rocks and minerals down to a similar fine grain size. Additionally, the photometric data are self-consistent for incidence angles less than ~60 degrees. Using Bear Mountain as a test case, we describe a very effective method for removing slope effects, except for the steepest slopes where immature regolith occurs, by using the photometric parameters determined from NAC DTM data to account for local illumination geometry. Finally, we make inferences about the local geology, where for example, we examine the photometric characterization of Tycho impact melt at Apollo 17 and discuss the potential for Tycho impact melt in Station 2 soils.For the project on vestan and lunar meteorites, my dissertation research involved developing data processing protocols, multivariate statistical classification routines, and data interpretation workflows for QCM and LM. These methods, along with standard geochemical analyses (e.g., electron probe microanalysis and instrumental neutron activation analysis), were used to quantitatively characterize the mineralogic and lithologic heterogeneity (modal abundance and mineral compositions) of vestan and lunar meteorite samples using non-destructive techniques. For example, six paired howardites, collected from the Dominion Range, Antarctica, during the 2010 ANSMET field season, were extensively characterized using petrography, electron probe microanalysis (EPMA), laser ablation ICP-MS, instrumental neutron activation analyses (INAA), and fused-bead (FB) analysis by EPMA. These howardites contain abundant lithic clasts of eucritic and diogenitic compositions, as well as atypical lithologies only recently recognized (dacite and Mg-rich harzburgite). Additionally, we identified secondary material (breccia-within-breccia and impact melt) derived from multiple impact events. We describe the characteristics of the howardites, and the lithic clasts they contain, to (1) establish the range and scale of petrologic diversity, (2) recognize inter- and intra-sample mineralogical and lithological heterogeneity, (3) confirm the initial pairing of these stones, and (4) demonstrate the magmatic complexity of Vesta, and by inference, early formed planetesimals. We identified a minimum of 21 individual lithologies represented by lithic clasts >1 mm, based on textural and geochemical analysis; however, more lithologies may be represented as comminuted mineral fragments. Large inter- and intra-sample variations exist between the howardites, with distinct diogenite:eucrite and basaltic eucrite:cumulate eucrite ratios, which may be identifiable in Dawn data. We conclude that these meteorites are fragments of the megaregolith and have the potential to represent the largest sample of the vestan surface and are therefore ideal for remote sensing calibration studies.In summary, the results from my dissertation projects are used to: (1) correlate the photometric properties of the lunar regolith to physiochemical characteristics of Apollo 17 soil samples and address outstanding science questions at the Apollo 17 landing site (e.g., characterization of impact melt from Tycho crater); and (2) assess the extent of magmatic differentiation in the vestan crust, and by inference early planetesimals. This dissertation offers new methods for investigating small-scale compositional variations on the Moon; and provides new, highly effective methods for petrologic investigations of complex samples for which only limited quantities exist (e.g., returned lunar and asteroid samples).

New Views of the Moon

New Views of the Moon PDF Author: Bradley L. Jolliff
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 1501509535
Category : Science
Languages : en
Pages : 756

Book Description
Volume 60 of Reviews in Mineralogy and Geochemistry assesses the current state of knowledge of lunar geoscience, given the data sets provided by missions of the 1990's, and lists remaining key questions as well as new ones for future exploration to address. It documents how a planet or moon other than the world on which we live can be studied and understood in light of integrated suites of specific kinds of information. The Moon is the only body other than Earth for which we have material samples of known geologic context for study. This volume seeks to show how the different kinds of information gained about the Moon relate to each other and also to learn from this experience, thus allowing more efficient planning for the exploration of other worlds.

Geochemical Exploration of the Moon and Planets

Geochemical Exploration of the Moon and Planets PDF Author: Julian Gualterio Roederer
Publisher: Springer
ISBN: 3662384655
Category : Science
Languages : en
Pages : 252

Book Description
This book presents a review of those efforts that have been and are being made to determine the geochemical composition of the moon and planets. The authors have attempted to present both a review as well as their philosophy about the development of flight experiments for geo chemical studies. Their basic premise is that such flight experiments should emphasize the scientific objectives and a total systems approach to meeting these objectives, involving the analytical device, data handling and data interpretation. While the above seems reasonably obvious, many proposals of experiments often tend to begin with an instrument with too little concern about the constraints imposed and whether the data that can be obtained are sufficiently useful to meet the scientific objectives. This book covers the accomplishments in space science exploration, bearing on the history and composition ofthe solar system. 'It also covers the rationale behind the lunar and planetary exploration program. The latter part of the book is concerned with future plans for lunar and planetary exploration instrumentation and techniques in various stages of development. There is an exposition of the methods of remote analysis of the moon and planets, including some concepts developed by the authors as a result of their long term involvement with the space program, from its early inception to the present day preparation for remote geochemical analysis in the Apollo, Mariner and Viking missions.

Lunar Remote Sensing and Measurements

Lunar Remote Sensing and Measurements PDF Author: Geological Survey (U.S.)
Publisher:
ISBN:
Category : Moon
Languages : en
Pages : 88

Book Description


Moon Rocks and Minerals

Moon Rocks and Minerals PDF Author: Alfred A. Levinson
Publisher: Elsevier
ISBN: 1483186865
Category : Nature
Languages : en
Pages : 245

Book Description
Moon Rocks and Minerals compiles the important findings that have resulted from the first study of the Apollo 11 lunar rocks, including preliminary data on Apollo 12 lunar samples. The compiled study samples and proposals on the lunar rocks are categorized into four general categories— mineralogy and petrology, chemical and isotope analyses, physical properties, and bioscience and organic geochemistry. In these categories, this book specifically discusses the types and mineralogy of lunar rocks and soils; chemistry of samples brought by Apollo 11 and 12; and experimental studies and origin of the lavas. The age of the lunar rocks, isotope studies, cosmic ray, and solar wind effects and origin of the moon are also deliberated. This text also covers the examination of lunar samples for the presence of biochemical organic compounds in the general context of the possibility of extraterrestrial life. This publication is beneficial to scientists of disciplines such as geochemistry, cosmochemistry, mineralogy, and geophysics.

The Geologic History of the Moon

The Geologic History of the Moon PDF Author: U S Department of the Interior
Publisher: CreateSpace
ISBN: 9781495919855
Category : Science
Languages : en
Pages : 336

Book Description
The Moon held little interest for most scientists after its basic astronomic properties had been determined and before direct exploration appeared likely. Speculations about its internal structure, composition, and origin were only broadly constrained by cosmochemical data from meteorites and solar spectra, and by astronomic data about its size, shape, motions, and surficial properties. Most investigators who were active before the space age began in 1957 believed that significant new advances in lunar knowledge required acquisition of additional data. One analytical technique, however, was insufficiently exploited before the 1960's. Few scientists since the geologist Gilbert had studied the lunar surface systematically from the historical point of view. Those who did immediately obtained important new insights about the Moon's postaccretion evolution. Then, the pioneering work of E.M. Shoemaker and R.J. Hackman focused the powerful methods of stratigraphy on lunar problems. Stratigraphy is the study of the spatial distribution, chronologic relations, and formative processes of layered rocks. Its application to the Moon came relatively late and met resistance, but the fundamental stratigraphic approach was, in fact, readily transferable to the partly familiar, partly exotic deposits visible on the lunar surface. Stratigraphic methods were applied systematically during the 1960's in a program of geologic mapping that aimed at reconstructing the evolution of the Moon's nearside. Order was discovered among the seemingly diverse and random landforms of the lunar surface by determining the sequence in which they were emplaced. The stratigraphic sequence and the emplacement processes deduced therefrom provided a framework for exploration by the Apollo program and for the task of analyzing the returned samples. During the 19703, the sophisticated labor of hundreds of analysts was brought to bear on the wealth of material returned by the American Apollo and the Soviet Luna spacecraft. Our present perception of the Moon has emerged from the interplay between sampling studies and stratigraphically based photogeology. These two approaches are complementary: Photogeology contributes a historical context by viewing the whole Moon from a distant vantage point, whereas the samples contain information on rock types and absolute ages unobtainable by remote methods. Neither approach by itself, even the most elaborate program of direct surface exploration, could have yielded the current advanced state of knowledge within the relatively short time of two decades. This volume presents a model for the geologic evolution of the Moon that has emerged mainly from this integration of photogeologic stratigraphy and sample analysis. Other aspects of the vast field of lunar science are discussed here only insofar as they pertain to the evolution of visible surface features. Chemical data obtained by remote sensing supplement the photogeologic interpretations of some geologic units, and geophysical data obtained both from lunar orbit and on the surface constrain hypotheses of the origin of many internally generated structures and deposits. Studies of the same data that treat the Moon as a whole, including speculations about the intriguing but unsolved problem of its origin, have been adequately covered in other reviews. This volume is written primarily for geoscientists and other planetologists who have examined some aspect of lunar or planetary science and who want a review of lunar science from the viewpoint of historical geology. It should also provide a useful summary for the advanced student who is conversant with common geologic terms. It may, furthermore, interest the geologist who has not studied the Moon but who wishes to see how his methodology has been applied to another planet.

Lunar Surface Studies

Lunar Surface Studies PDF Author:
Publisher:
ISBN:
Category : Moon
Languages : en
Pages : 534

Book Description