Structure of Algebras PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Structure of Algebras PDF full book. Access full book title Structure of Algebras by Abraham Adrian Albert. Download full books in PDF and EPUB format.

Structure of Algebras

Structure of Algebras PDF Author: Abraham Adrian Albert
Publisher: American Mathematical Soc.
ISBN: 0821810243
Category : Mathematics
Languages : en
Pages : 224

Book Description
The first three chapters of this work contain an exposition of the Wedderburn structure theorems. Chapter IV contains the theory of the commutator subalgebra of a simple subalgebra of a normal simple algebra, the study of automorphisms of a simple algebra, splitting fields, and the index reduction factor theory. The fifth chapter contains the foundation of the theory of crossed products and of their special case, cyclic algebras. The theory of exponents is derived there as well as the consequent factorization of normal division algebras into direct factors of prime-power degree. Chapter VI consists of the study of the abelian group of cyclic systems which is applied in Chapter VII to yield the theory of the structure of direct products of cyclic algebras and the consequent properties of norms in cyclic fields. This chapter is closed with the theory of $p$-algebras. In Chapter VIII an exposition is given of the theory of the representations of algebras. The treatment is somewhat novel in that while the recent expositions have used representation theorems to obtain a number of results on algebras, here the theorems on algebras are themselves used in the derivation of results on representations. The presentation has its inspiration in the author's work on the theory of Riemann matrices and is concluded by the introduction to the generalization (by H. Weyl and the author) of that theory. The theory of involutorial simple algebras is derived in Chapter X both for algebras over general fields and over the rational field. The results are also applied in the determination of the structure of the multiplication algebras of all generalized Riemann matrices, a result which is seen in Chapter XI to imply a complete solution of the principal problem on Riemann matrices.

Structure of Algebras

Structure of Algebras PDF Author: Abraham Adrian Albert
Publisher: American Mathematical Soc.
ISBN: 0821810243
Category : Mathematics
Languages : en
Pages : 224

Book Description
The first three chapters of this work contain an exposition of the Wedderburn structure theorems. Chapter IV contains the theory of the commutator subalgebra of a simple subalgebra of a normal simple algebra, the study of automorphisms of a simple algebra, splitting fields, and the index reduction factor theory. The fifth chapter contains the foundation of the theory of crossed products and of their special case, cyclic algebras. The theory of exponents is derived there as well as the consequent factorization of normal division algebras into direct factors of prime-power degree. Chapter VI consists of the study of the abelian group of cyclic systems which is applied in Chapter VII to yield the theory of the structure of direct products of cyclic algebras and the consequent properties of norms in cyclic fields. This chapter is closed with the theory of $p$-algebras. In Chapter VIII an exposition is given of the theory of the representations of algebras. The treatment is somewhat novel in that while the recent expositions have used representation theorems to obtain a number of results on algebras, here the theorems on algebras are themselves used in the derivation of results on representations. The presentation has its inspiration in the author's work on the theory of Riemann matrices and is concluded by the introduction to the generalization (by H. Weyl and the author) of that theory. The theory of involutorial simple algebras is derived in Chapter X both for algebras over general fields and over the rational field. The results are also applied in the determination of the structure of the multiplication algebras of all generalized Riemann matrices, a result which is seen in Chapter XI to imply a complete solution of the principal problem on Riemann matrices.

Fundamental Structures of Algebra and Discrete Mathematics

Fundamental Structures of Algebra and Discrete Mathematics PDF Author: Stephan Foldes
Publisher: John Wiley & Sons
ISBN: 1118031431
Category : Mathematics
Languages : en
Pages : 362

Book Description
Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.

The Structure of Finite Algebras

The Structure of Finite Algebras PDF Author: David Charles Hobby
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 220

Book Description
The utility of congruence lattices in revealing the structure of general algebras has been recognized since Garrett Birkhoff's pioneering work in the 1930s and 1940s. However, the results presented in this book are of very recent origin: most of them were developed in 1983. The main discovery presented here is that the lattice of congruences of a finite algebra is deeply connected to the structure of that algebra. The theory reveals a sharp division of locally finite varieties of algebras into six interesting new families, each of which is characterized by the behavior of congruences in the algebras. The authors use the theory to derive many new results that will be of interest not only to universal algebraists, but to other algebraists as well. The authors begin with a straightforward and complete development of basic tame congruence theory, a topic that offers great promise for a wide variety of investigations. They then move beyond the consideration of individual algebras to a study of locally finite varieties. A list of open problems closes the work.

The Algebraic Structure of Group Rings

The Algebraic Structure of Group Rings PDF Author: Donald S. Passman
Publisher: Courier Corporation
ISBN: 0486482065
Category : Mathematics
Languages : en
Pages : 754

Book Description
"'Highly recommended' by the Bulletin of the London Mathematical Society, this book offers a comprehensive, self-contained treatment of group rings. The subject involves the intersection of two essentially different disciplines, group theory and ring theory. The Bulletin of the American Mathematical Society hailed this treatment as 'a majestic account,' proclaiming it "encyclopedic and lucid." 1985 edition"--

Algebraic Structures

Algebraic Structures PDF Author: George R. Kempf
Publisher: Springer Science & Business Media
ISBN: 3322802787
Category : Mathematics
Languages : en
Pages : 174

Book Description
In algebra there are four basic structures: groups, rings, fields and modules. In this book the theory of these basic structures is presented and the laws of composition - the basic operations of algebra - are studied. Essentially, no previous knowledge is required, it is only assumed as background that the reader has learned some linear algebra over the real numbers.Dieses Lehrbuch, verfasst von einem anerkannten amerikanischen Mathematiker, ist eine unkonventionelle Einführung in die Algebra. Es gibt vier grundlegende Strukturen in der Algebra: Gruppen, Ringe, Körper und Moduln. Das Buch behandelt die Theorie dieser Strukturen und beschreibt die Verknüpfungsregeln, die grundlegenden Operationen der Algebra. Die Darstellung ist elementar: es werden nur Kenntnisse der Linearen Algebra vorausgesetzt, weitere Fachkenntnisse sind nicht erforderlich.

Abstract Algebra

Abstract Algebra PDF Author: Stephen Lovett
Publisher: CRC Press
ISBN: 1482248913
Category : Mathematics
Languages : en
Pages : 717

Book Description
A Discovery-Based Approach to Learning about Algebraic StructuresAbstract Algebra: Structures and Applications helps students understand the abstraction of modern algebra. It emphasizes the more general concept of an algebraic structure while simultaneously covering applications. The text can be used in a variety of courses, from a one-semester int

Algebraic Structures and Applications

Algebraic Structures and Applications PDF Author: Sergei Silvestrov
Publisher: Springer Nature
ISBN: 3030418502
Category : Mathematics
Languages : en
Pages : 976

Book Description
This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis of Markov chains, and applications in network analysis, financial mathematics and engineering mathematics. The book addresses both theory and applications, which are illustrated with a wealth of ideas, proofs and examples to help readers understand the material and develop new mathematical methods and concepts of their own. The high-quality chapters share a wealth of new methods and results, review cutting-edge research and discuss open problems and directions for future research. Taken together, they offer a source of inspiration for a broad range of researchers and research students whose work involves algebraic structures and their applications, probability theory and mathematical statistics, applied mathematics, engineering mathematics and related areas.

Structure and Representations of Jordan Algebras

Structure and Representations of Jordan Algebras PDF Author: Nathan Jacobson
Publisher: American Mathematical Soc.
ISBN: 082184640X
Category : Mathematics
Languages : en
Pages : 464

Book Description
The theory of Jordan algebras has played important roles behind the scenes of several areas of mathematics. Jacobson's book has long been the definitive treatment of the subject. It covers foundational material, structure theory, and representation theory for Jordan algebras. Of course, there are immediate connections with Lie algebras, which Jacobson details in Chapter 8. Of particular continuing interest is the discussion of exceptional Jordan algebras, which serve to explain the exceptional Lie algebras and Lie groups. Jordan algebras originally arose in the attempts by Jordan, von Neumann, and Wigner to formulate the foundations of quantum mechanics. They are still useful and important in modern mathematical physics, as well as in Lie theory, geometry, and certain areas of analysis.

A Physicists Introduction to Algebraic Structures

A Physicists Introduction to Algebraic Structures PDF Author: Palash B. Pal
Publisher: Cambridge University Press
ISBN: 1108492207
Category : Mathematics
Languages : en
Pages : 717

Book Description
Algebraic structures including vector space, groups, topological spaces and more, all covered in one volume, showing the mutual connections.

Jordan Structures in Lie Algebras

Jordan Structures in Lie Algebras PDF Author: Antonio Fernández López
Publisher:
ISBN: 9781470453626
Category :
Languages : en
Pages : 314

Book Description
This book explores applications of Jordan theory to the theory of Lie algebras. It begins with the general theory of nonassociative algebras and of Lie algebras and then focuses on properties of Jordan elements of special types. Then it proceeds to the core of the book, in which the author explains how properties of the Jordan algebra attached to a Jordan element of a Lie algebra can be used to reveal properties of the Lie algebra itself. One of the special features of this book is that it carefully explains Zelmanov's seminal results on infinite-dimensional Lie algebras from this point of vie.