Author: James M. Howe
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 552
Book Description
A thorough exploration of the atomic structures and properties of the essential engineering interfaces—an invaluable resource for students, teachers, and professionals The most up-to-date, accessible guide to solid-vapor, solid-liquid, and solid-solid phase transformations, this innovative book contains the only unified treatment of these three central engineering interfaces. Employing a simple nearest-neighbor broken-bond model, Interfaces in Materials focuses on metal alloys in a straightforward approach that can be easily extended to all types of interfaces and materials. Enhanced with nearly 300 illustrations, along with extensive references and suggestions for further reading, this book provides: A simple, cohesive approach to understanding the atomic structure and properties of interfaces formed between solid, liquid, and vapor phases Self-contained discussions of each interface—allowing separate study of each phase transformation A comparative look at the different interfaces, including atomic structure and crystallography; anisotropy, roughening, and melting; interfacial stability and segregation; continuous and ledge growth models; and atomistic modeling An analysis of nearest-neighbor broken-bond results against thermodynamic and kinetic descriptions of the interfaces Problem sets at the end of each chapter, emphasizing the key concepts detailed in the text Spanning the fields of chemical, electrical and computer engineering, materials science, solid-state physics, and microscopy, Interfaces in Materials bridges a major gap in the literature of surface and interface science.
Interfaces in Materials
Author: James M. Howe
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 552
Book Description
A thorough exploration of the atomic structures and properties of the essential engineering interfaces—an invaluable resource for students, teachers, and professionals The most up-to-date, accessible guide to solid-vapor, solid-liquid, and solid-solid phase transformations, this innovative book contains the only unified treatment of these three central engineering interfaces. Employing a simple nearest-neighbor broken-bond model, Interfaces in Materials focuses on metal alloys in a straightforward approach that can be easily extended to all types of interfaces and materials. Enhanced with nearly 300 illustrations, along with extensive references and suggestions for further reading, this book provides: A simple, cohesive approach to understanding the atomic structure and properties of interfaces formed between solid, liquid, and vapor phases Self-contained discussions of each interface—allowing separate study of each phase transformation A comparative look at the different interfaces, including atomic structure and crystallography; anisotropy, roughening, and melting; interfacial stability and segregation; continuous and ledge growth models; and atomistic modeling An analysis of nearest-neighbor broken-bond results against thermodynamic and kinetic descriptions of the interfaces Problem sets at the end of each chapter, emphasizing the key concepts detailed in the text Spanning the fields of chemical, electrical and computer engineering, materials science, solid-state physics, and microscopy, Interfaces in Materials bridges a major gap in the literature of surface and interface science.
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 552
Book Description
A thorough exploration of the atomic structures and properties of the essential engineering interfaces—an invaluable resource for students, teachers, and professionals The most up-to-date, accessible guide to solid-vapor, solid-liquid, and solid-solid phase transformations, this innovative book contains the only unified treatment of these three central engineering interfaces. Employing a simple nearest-neighbor broken-bond model, Interfaces in Materials focuses on metal alloys in a straightforward approach that can be easily extended to all types of interfaces and materials. Enhanced with nearly 300 illustrations, along with extensive references and suggestions for further reading, this book provides: A simple, cohesive approach to understanding the atomic structure and properties of interfaces formed between solid, liquid, and vapor phases Self-contained discussions of each interface—allowing separate study of each phase transformation A comparative look at the different interfaces, including atomic structure and crystallography; anisotropy, roughening, and melting; interfacial stability and segregation; continuous and ledge growth models; and atomistic modeling An analysis of nearest-neighbor broken-bond results against thermodynamic and kinetic descriptions of the interfaces Problem sets at the end of each chapter, emphasizing the key concepts detailed in the text Spanning the fields of chemical, electrical and computer engineering, materials science, solid-state physics, and microscopy, Interfaces in Materials bridges a major gap in the literature of surface and interface science.
Structure of a Liquid-vapor Interface
Author: J K Percus
Publisher: Legare Street Press
ISBN: 9781019585580
Category :
Languages : en
Pages : 0
Book Description
This book provides a detailed analysis of the properties of liquid-vapor interfaces, an important area of research in the field of soft matter physics. The authors, J.K. Percus, M. Rao, and Malvin H. Kalos are distinguished scholars in their respective fields and provide a comprehensive overview of the current state of research in this area. This book is a must-read for anyone interested in the physics of soft matter and interface phenomena. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Publisher: Legare Street Press
ISBN: 9781019585580
Category :
Languages : en
Pages : 0
Book Description
This book provides a detailed analysis of the properties of liquid-vapor interfaces, an important area of research in the field of soft matter physics. The authors, J.K. Percus, M. Rao, and Malvin H. Kalos are distinguished scholars in their respective fields and provide a comprehensive overview of the current state of research in this area. This book is a must-read for anyone interested in the physics of soft matter and interface phenomena. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Liquid Surfaces and Interfaces
Author: Peter S. Pershan
Publisher: Cambridge University Press
ISBN: 0521814014
Category : Science
Languages : en
Pages : 335
Book Description
A practical guide for graduate students and researchers on all aspects of x-ray scattering experiments on liquid surfaces and interfaces.
Publisher: Cambridge University Press
ISBN: 0521814014
Category : Science
Languages : en
Pages : 335
Book Description
A practical guide for graduate students and researchers on all aspects of x-ray scattering experiments on liquid surfaces and interfaces.
Physical Chemistry of Gas-Liquid Interfaces
Author: Jennifer A. Faust
Publisher: Elsevier
ISBN: 0128136421
Category : Science
Languages : en
Pages : 492
Book Description
Physical Chemistry of Gas-Liquid Interfaces, the first volume in the Developments in Physical & Theoretical Chemistry series, addresses the physical chemistry of gas transport and reactions across liquid surfaces. Gas–liquid interfaces are all around us, especially within atmospheric systems such as sea spry aerosols, cloud droplets, and the surface of the ocean. Because the reaction environment at liquid surfaces is completely unlike bulk gas or bulk liquid, chemists must readjust their conceptual framework when entering this field. This book provides the necessary background in thermodynamics and computational and experimental techniques for scientists to obtain a thorough understanding of the physical chemistry of liquid surfaces in complex, real-world environments. - 2019 PROSE Awards - Winner: Category: Chemistry and Physics: Association of American Publishers - Provides an interdisciplinary view of the chemical dynamics of liquid surfaces, making the content of specific use to physical chemists and atmospheric scientists - Features 100 figures and illustrations to underscore key concepts and aid in retention for young scientists in industry and graduate students in the classroom - Helps scientists who are transitioning to this field by offering the appropriate thermodynamic background and surveying the current state of research
Publisher: Elsevier
ISBN: 0128136421
Category : Science
Languages : en
Pages : 492
Book Description
Physical Chemistry of Gas-Liquid Interfaces, the first volume in the Developments in Physical & Theoretical Chemistry series, addresses the physical chemistry of gas transport and reactions across liquid surfaces. Gas–liquid interfaces are all around us, especially within atmospheric systems such as sea spry aerosols, cloud droplets, and the surface of the ocean. Because the reaction environment at liquid surfaces is completely unlike bulk gas or bulk liquid, chemists must readjust their conceptual framework when entering this field. This book provides the necessary background in thermodynamics and computational and experimental techniques for scientists to obtain a thorough understanding of the physical chemistry of liquid surfaces in complex, real-world environments. - 2019 PROSE Awards - Winner: Category: Chemistry and Physics: Association of American Publishers - Provides an interdisciplinary view of the chemical dynamics of liquid surfaces, making the content of specific use to physical chemists and atmospheric scientists - Features 100 figures and illustrations to underscore key concepts and aid in retention for young scientists in industry and graduate students in the classroom - Helps scientists who are transitioning to this field by offering the appropriate thermodynamic background and surveying the current state of research
Ions in Water and Biophysical Implications
Author: Yizhak Marcus
Publisher: Springer Science & Business Media
ISBN: 9400746474
Category : Science
Languages : en
Pages : 224
Book Description
Over the past decade, numerous books have attempted to explain ions in aqueous solutions in relation to biophysical phenomena. Ions in Water and Biophysical Implications, from Chaos to Cosmos offers a physicochemical point of view of the spread of this matter and suggests innovative solutions that will challenge the biophysics research establishment. Starting with a throughout discussion of the properties of liquid water, in particular as a structured liquid with an extensive hydrogen bonded structure, the book examines water as a solvent for gases, non-electrolytes, and electrolytes and reviews the properties, sizes and thermodynamics of isolated and aqueous ions, as well as their interactions, including those of polyelectrolytes. The effects of ions on water structure, including those on solvent dynamics and certain thermodynamic quantities, are presented. This volume investigates water surfaces with its vapour, with another liquid, and with a solid, as well as the effects of solutes, including simple ions and the water-miscible non-electrolytes. Surfaces are relevant to biomolecular and colloidal systems and the book discusses briefly surfactants, micelles and vesicles. Finally, the book concludes with a review of the various biophysical implications involving chaotropic and kosmotropic ions in homogeneous solutions and the Hofmeister series for ions concerning biomolecular and colloidal systems and some aspects of protein hydration and K+/Na+ selectivity in ion channels. Ions in Water and Biophysical Implications, from Chaos to Cosmos will appeal to physical chemists, biophysicists, biochemists, as well as to all students and researchers involved in the study of aqueous solutions.
Publisher: Springer Science & Business Media
ISBN: 9400746474
Category : Science
Languages : en
Pages : 224
Book Description
Over the past decade, numerous books have attempted to explain ions in aqueous solutions in relation to biophysical phenomena. Ions in Water and Biophysical Implications, from Chaos to Cosmos offers a physicochemical point of view of the spread of this matter and suggests innovative solutions that will challenge the biophysics research establishment. Starting with a throughout discussion of the properties of liquid water, in particular as a structured liquid with an extensive hydrogen bonded structure, the book examines water as a solvent for gases, non-electrolytes, and electrolytes and reviews the properties, sizes and thermodynamics of isolated and aqueous ions, as well as their interactions, including those of polyelectrolytes. The effects of ions on water structure, including those on solvent dynamics and certain thermodynamic quantities, are presented. This volume investigates water surfaces with its vapour, with another liquid, and with a solid, as well as the effects of solutes, including simple ions and the water-miscible non-electrolytes. Surfaces are relevant to biomolecular and colloidal systems and the book discusses briefly surfactants, micelles and vesicles. Finally, the book concludes with a review of the various biophysical implications involving chaotropic and kosmotropic ions in homogeneous solutions and the Hofmeister series for ions concerning biomolecular and colloidal systems and some aspects of protein hydration and K+/Na+ selectivity in ion channels. Ions in Water and Biophysical Implications, from Chaos to Cosmos will appeal to physical chemists, biophysicists, biochemists, as well as to all students and researchers involved in the study of aqueous solutions.
Structures and Dynamics of Interfacial Water
Author: Fujie Tang
Publisher: Springer
ISBN: 9811389659
Category : Science
Languages : en
Pages : 107
Book Description
This book focuses on the study of the interfacial water using molecular dynamics simulation and experimental sum frequency generation spectroscopy. It proposes a new definition of the free O-H groups at water-air interface and presents research on the structure and dynamics of these groups. Furthermore, it discusses the exponential decay nature of the orientation distribution of the free O-H groups of interfacial water and ascribes the origin of the down pointing free O-H groups to the presence of capillary waves on the surface. It also describes how, based on this new definition, a maximum surface H-bond density of around 200 K at ice surface was found, as the maximum results from two competing effects. Lastly, the book discusses the absorption of water molecules at the water–TiO2 interface. Providing insights into the combination of molecular dynamics simulation and experimental sum frequency generation spectroscopy, it is a valuable resource for researchers in the field.
Publisher: Springer
ISBN: 9811389659
Category : Science
Languages : en
Pages : 107
Book Description
This book focuses on the study of the interfacial water using molecular dynamics simulation and experimental sum frequency generation spectroscopy. It proposes a new definition of the free O-H groups at water-air interface and presents research on the structure and dynamics of these groups. Furthermore, it discusses the exponential decay nature of the orientation distribution of the free O-H groups of interfacial water and ascribes the origin of the down pointing free O-H groups to the presence of capillary waves on the surface. It also describes how, based on this new definition, a maximum surface H-bond density of around 200 K at ice surface was found, as the maximum results from two competing effects. Lastly, the book discusses the absorption of water molecules at the water–TiO2 interface. Providing insights into the combination of molecular dynamics simulation and experimental sum frequency generation spectroscopy, it is a valuable resource for researchers in the field.
Fundamentals and Applications in Aerosol Spectroscopy
Author: Ruth Signorell
Publisher: CRC Press
ISBN: 142008562X
Category : Nature
Languages : en
Pages : 513
Book Description
Helping you better understand the processes, instruments, and methods of aerosol spectroscopy, Fundamentals and Applications in Aerosol Spectroscopy provides an overview of the state of the art in this rapidly developing field. It covers fundamental aspects of aerosol spectroscopy, applications to atmospherically and astronomically relevant problem
Publisher: CRC Press
ISBN: 142008562X
Category : Nature
Languages : en
Pages : 513
Book Description
Helping you better understand the processes, instruments, and methods of aerosol spectroscopy, Fundamentals and Applications in Aerosol Spectroscopy provides an overview of the state of the art in this rapidly developing field. It covers fundamental aspects of aerosol spectroscopy, applications to atmospherically and astronomically relevant problem
Polymer Science: A Comprehensive Reference
Author:
Publisher: Newnes
ISBN: 0080878628
Category : Technology & Engineering
Languages : en
Pages : 7752
Book Description
The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin polymerization, new ionic polymerization procedures, and atom transfer radical polymerization, nitroxide mediated polymerization, and reversible addition-fragmentation chain transfer systems as the most often used controlled/living radical polymerization methods. Volume 4 is devoted to kinetics, mechanisms and applications of ring opening polymerization of heterocyclic monomers and cycloolefins (ROMP), as well as to various less common polymerization techniques. Polycondensation and non-chain polymerizations, including dendrimer synthesis and various "click" procedures, are covered in Volume 5. Volume 6 focuses on several aspects of controlled macromolecular architectures and soft nano-objects including hybrids and bioconjugates. Many of the achievements would have not been possible without new characterization techniques like AFM that allowed direct imaging of single molecules and nano-objects with a precision available only recently. An entirely new aspect in polymer science is based on the combination of bottom-up methods such as polymer synthesis and molecularly programmed self-assembly with top-down structuring such as lithography and surface templating, as presented in Volume 7. It encompasses polymer and nanoparticle assembly in bulk and under confined conditions or influenced by an external field, including thin films, inorganic-organic hybrids, or nanofibers. Volume 8 expands these concepts focusing on applications in advanced technologies, e.g. in electronic industry and centers on combination with top down approach and functional properties like conductivity. Another type of functionality that is of rapidly increasing importance in polymer science is introduced in volume 9. It deals with various aspects of polymers in biology and medicine, including the response of living cells and tissue to the contact with biofunctional particles and surfaces. The last volume is devoted to the scope and potential provided by environmentally benign and green polymers, as well as energy-related polymers. They discuss new technologies needed for a sustainable economy in our world of limited resources. Provides broad and in-depth coverage of all aspects of polymer science from synthesis/polymerization, properties, and characterization methods and techniques to nanostructures, sustainability and energy, and biomedical uses of polymers Provides a definitive source for those entering or researching in this area by integrating the multidisciplinary aspects of the science into one unique, up-to-date reference work Electronic version has complete cross-referencing and multi-media components Volume editors are world experts in their field (including a Nobel Prize winner)
Publisher: Newnes
ISBN: 0080878628
Category : Technology & Engineering
Languages : en
Pages : 7752
Book Description
The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin polymerization, new ionic polymerization procedures, and atom transfer radical polymerization, nitroxide mediated polymerization, and reversible addition-fragmentation chain transfer systems as the most often used controlled/living radical polymerization methods. Volume 4 is devoted to kinetics, mechanisms and applications of ring opening polymerization of heterocyclic monomers and cycloolefins (ROMP), as well as to various less common polymerization techniques. Polycondensation and non-chain polymerizations, including dendrimer synthesis and various "click" procedures, are covered in Volume 5. Volume 6 focuses on several aspects of controlled macromolecular architectures and soft nano-objects including hybrids and bioconjugates. Many of the achievements would have not been possible without new characterization techniques like AFM that allowed direct imaging of single molecules and nano-objects with a precision available only recently. An entirely new aspect in polymer science is based on the combination of bottom-up methods such as polymer synthesis and molecularly programmed self-assembly with top-down structuring such as lithography and surface templating, as presented in Volume 7. It encompasses polymer and nanoparticle assembly in bulk and under confined conditions or influenced by an external field, including thin films, inorganic-organic hybrids, or nanofibers. Volume 8 expands these concepts focusing on applications in advanced technologies, e.g. in electronic industry and centers on combination with top down approach and functional properties like conductivity. Another type of functionality that is of rapidly increasing importance in polymer science is introduced in volume 9. It deals with various aspects of polymers in biology and medicine, including the response of living cells and tissue to the contact with biofunctional particles and surfaces. The last volume is devoted to the scope and potential provided by environmentally benign and green polymers, as well as energy-related polymers. They discuss new technologies needed for a sustainable economy in our world of limited resources. Provides broad and in-depth coverage of all aspects of polymer science from synthesis/polymerization, properties, and characterization methods and techniques to nanostructures, sustainability and energy, and biomedical uses of polymers Provides a definitive source for those entering or researching in this area by integrating the multidisciplinary aspects of the science into one unique, up-to-date reference work Electronic version has complete cross-referencing and multi-media components Volume editors are world experts in their field (including a Nobel Prize winner)
Water in Biology, Chemistry, and Physics
Author: G. Wilse Robinson
Publisher: World Scientific
ISBN: 9789810224516
Category : Science
Languages : en
Pages : 530
Book Description
The central theme, which threads through the entire book, concerns computational modeling methods for water. Modeling results for pure liquid water, water near ions, water at interfaces, water in biological microsystems, and water under other types of perturbations such as laser fields are described. Connections are made throughout the book with statistical mechanical theoretical methods on the one hand and with experimental data on the other. The book is expected to be useful not only for theorists and computer analysts interested in the physical, chemical, biological and geophysical aspects of water, but also for experimentalists in these fields.
Publisher: World Scientific
ISBN: 9789810224516
Category : Science
Languages : en
Pages : 530
Book Description
The central theme, which threads through the entire book, concerns computational modeling methods for water. Modeling results for pure liquid water, water near ions, water at interfaces, water in biological microsystems, and water under other types of perturbations such as laser fields are described. Connections are made throughout the book with statistical mechanical theoretical methods on the one hand and with experimental data on the other. The book is expected to be useful not only for theorists and computer analysts interested in the physical, chemical, biological and geophysical aspects of water, but also for experimentalists in these fields.
Introduction to Spacecraft Thermal Design
Author: Eric Silk
Publisher: Cambridge University Press
ISBN: 1107193796
Category : Science
Languages : en
Pages : 587
Book Description
Develop a fundamental understanding of heat transfer analysis techniques as applied to earth based spacecraft with this practical guide. Written in a tutorial style, this essential text provides a how-to manual tailored for those who wish to understand and develop spacecraft thermal analyses. Providing an overview of basic heat transfer analysis fundamentals such as thermal circuits, limiting resistance, MLI, environmental thermal sources and sinks, as well as contemporary space based thermal technologies, and the distinctions between design considerations inherent to room temperature and cryogenic temperature applications, this is the perfect tool for graduate students, professionals and academic researchers.
Publisher: Cambridge University Press
ISBN: 1107193796
Category : Science
Languages : en
Pages : 587
Book Description
Develop a fundamental understanding of heat transfer analysis techniques as applied to earth based spacecraft with this practical guide. Written in a tutorial style, this essential text provides a how-to manual tailored for those who wish to understand and develop spacecraft thermal analyses. Providing an overview of basic heat transfer analysis fundamentals such as thermal circuits, limiting resistance, MLI, environmental thermal sources and sinks, as well as contemporary space based thermal technologies, and the distinctions between design considerations inherent to room temperature and cryogenic temperature applications, this is the perfect tool for graduate students, professionals and academic researchers.