Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces PDF full book. Access full book title Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces by Zhongwei Zhu. Download full books in PDF and EPUB format.

Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces

Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces PDF Author: Zhongwei Zhu
Publisher:
ISBN:
Category :
Languages : en
Pages : 133

Book Description
Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis. Surface reconstruction at low-coordinated step sites at high gas pressures was first explored on a stepped Pt(557) single crystal surface under O2. At 298 K, 1 Torr of O2 is able to create nanometer-sized clusters that are identified as surface Pt oxide by AP-XPS, which covers the entire Pt(557) surface. On the flat Pt(111) surface under 1 Torr of O2, Pt oxide clusters can form but are mostly accumulated within 2 nm from the steps. The hexagonal oxygen chemisorption pattern is observed on the terraces. At lower pressures such as 10−7 Torr, O2 only adsorbs at the step edges on Pt(557). The majority of the Pt oxide clusters disappear on both Pt(557) and Pt(111) surfaces after O2 is evacuated to the 10−8 Torr range. Quantitative XPS analysis with depth profiles indicates that the Pt oxide formed on Pt(557) is less than 0.6 nm thick and that the Pt oxide concentration at surface together with oxygen coverage varies reversibly with the O2 pressure. The disappearance of Pt oxide clusters upon O2 evacuation is ascribed to reactions of Pt oxide towards H2 and CO in the vacuum background gases. The structure and surface chemistry of the Pt(557) surface was therefore studied under H2-O2 and CO-O2 mixtures. After exposing Pt(557) to approximately 1 Torr of O2 to induce the formation of Pt oxide clusters, H2 was slowly added into the system. Both HP-STM and AP-XPS results show that the Pt oxide coverage decreases with the H2 partial pressure and that all the Pt oxide disappears at H2 partial pressures above 43 mTorr. Pt steps are restored with the removal of Pt oxide clusters. Water is produced in the gas-phase, which co-adsorbs with hydroxyl species on Pt(557). Detailed analysis shows that the consumption of surface Pt oxide is exclusively responsible for the decrease of oxygen coverage on Pt(557). In the coexistence of 1 Torr of CO and 1 Torr of O2, Pt oxide clusters are not observed like under the H2-O2 mixture. Instead, triangular Pt clusters and double-sized terraces induced by CO are observed. Influences of step configuration on the surface restructuring processes were studied on Pt(557) and Pt(332) that differ only in the step orientation. 500 mTorr of CO creates Pt clusters shaped as triangles and parallelograms on Pt(557) and Pt(332), respectively. When 500 mTorr of C2H4 was introduced afterwards, Pt clusters are removed on Pt(332) but preserved on Pt(557). The three-fold hollow sites at the (111) steps enable the Pt(332) surface to accommodate ethylidyne even covered by CO. As a result, kink Pt atoms at the cluster edges are driven to diffuse to form straight steps, so as to admit more ethylidyne at steps. In contrast, Pt(557) has (100) steps on which ethylidyne does not adsorb, therefore keeping the island structure after the introduction of C2H4. When 500 mTorr of C2H4 was added first into the high-pressure cell, a periodic pattern is resolved at step edges on Pt(332). In contrast, some bright species separated by more than 1 nm are observed on Pt(557). Further introducing 500 mTorr of CO does not facilitate the formation of Pt clusters. The structure and mobility under C2H4, H2, and CO were also studied on the Pt(100) surface, whose topmost layer is rearranged into a hexagonal overlayer in vacuum. Under 1 Torr of C2H4, the hexagonal reconstruction is preserved on Pt(100), which is covered by highly mobile adsorbates. Pt atoms on the hexagonal layer can also move as a result of the weakened interaction between the surface layer and the bulk. The mobility is enhanced under 1 Torr of 1:1 C2H4-H2 mixture because the Pt(100)-hex surface is active in ethylene hydrogenation. The surface mobility along with the catalytic reaction is quenched after introducing 3 mTorr of CO. Meanwhile, the hexagonal reconstruction is lifted by the adsorption of CO. At 5 × 10−6 Torr of C2H4, CO from background gases can also adsorb on Pt(100), creating Pt islands that do not revert to the hexagonal surface when the C2H4 pressure was further increased to 1 Torr. In order to understand the effect of substrates on surface reconstruction, the structure of the stepped Cu(557) surface was monitored in equilibrium with high pressures of gases. Cu generally binds to the reducing gases such as CO, H2, and C2H4 weaker than Pt, leading to a lower coverage on Cu than on Pt at the same gas pressure. Accordingly, 12 Torr of CO is required to induce clusters on Cu(557), because higher CO pressures are needed to keep a sufficient amount of CO that can stabilize clusters. At 1 Torr, large terraces with an average width of 23 nm are observed on Cu(557), because of the low diffusion barrier for Cu atoms both on terraces and along the steps. 500 mTorr of H2 results in step coalescence on Cu(557), giving rise to 6 nm wide terraces. C2H4 adsorption at 500 mTorr results in 5 nm large clusters. CO does not change the Cu(557) surface structure while adding into C2H4, but causes the appearance of large terraces while co-adsorbing with H2. Under oxidizing gases, for example 1 Torr of O2, the Cu(557) surface is significantly oxidized, forming thick layers of Cu oxide. Pt-based bimetallic nanoparticle catalysts were also investigated with AP-XPS under reaction conditions to study their surface chemistry. PtFe nanoparticles do not undergo any surface segregation at 298 K when the gas environment changes, but surface Fe atoms are partially reduced under the C2H4-H2 mixture and partially oxidized under O2. Neither does the surface composition of Pt9Co-Co core-shell nanoparticles change while heating under H2 even to 673 K nor do oxidation states. In Pt-Ni systems, at 393 K, Ni is oxidized under O2 and migrates to the surface because Ni is more susceptible to oxidation than Pt. In contrast, when the surface is reduced by H2, Pt segregates to the surface since the surface free energy of Pt is lower. Such segregation does not occur at 353 K owing to the low atomic mobility in lattice.

Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces

Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces PDF Author: Zhongwei Zhu
Publisher:
ISBN:
Category :
Languages : en
Pages : 133

Book Description
Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis. Surface reconstruction at low-coordinated step sites at high gas pressures was first explored on a stepped Pt(557) single crystal surface under O2. At 298 K, 1 Torr of O2 is able to create nanometer-sized clusters that are identified as surface Pt oxide by AP-XPS, which covers the entire Pt(557) surface. On the flat Pt(111) surface under 1 Torr of O2, Pt oxide clusters can form but are mostly accumulated within 2 nm from the steps. The hexagonal oxygen chemisorption pattern is observed on the terraces. At lower pressures such as 10−7 Torr, O2 only adsorbs at the step edges on Pt(557). The majority of the Pt oxide clusters disappear on both Pt(557) and Pt(111) surfaces after O2 is evacuated to the 10−8 Torr range. Quantitative XPS analysis with depth profiles indicates that the Pt oxide formed on Pt(557) is less than 0.6 nm thick and that the Pt oxide concentration at surface together with oxygen coverage varies reversibly with the O2 pressure. The disappearance of Pt oxide clusters upon O2 evacuation is ascribed to reactions of Pt oxide towards H2 and CO in the vacuum background gases. The structure and surface chemistry of the Pt(557) surface was therefore studied under H2-O2 and CO-O2 mixtures. After exposing Pt(557) to approximately 1 Torr of O2 to induce the formation of Pt oxide clusters, H2 was slowly added into the system. Both HP-STM and AP-XPS results show that the Pt oxide coverage decreases with the H2 partial pressure and that all the Pt oxide disappears at H2 partial pressures above 43 mTorr. Pt steps are restored with the removal of Pt oxide clusters. Water is produced in the gas-phase, which co-adsorbs with hydroxyl species on Pt(557). Detailed analysis shows that the consumption of surface Pt oxide is exclusively responsible for the decrease of oxygen coverage on Pt(557). In the coexistence of 1 Torr of CO and 1 Torr of O2, Pt oxide clusters are not observed like under the H2-O2 mixture. Instead, triangular Pt clusters and double-sized terraces induced by CO are observed. Influences of step configuration on the surface restructuring processes were studied on Pt(557) and Pt(332) that differ only in the step orientation. 500 mTorr of CO creates Pt clusters shaped as triangles and parallelograms on Pt(557) and Pt(332), respectively. When 500 mTorr of C2H4 was introduced afterwards, Pt clusters are removed on Pt(332) but preserved on Pt(557). The three-fold hollow sites at the (111) steps enable the Pt(332) surface to accommodate ethylidyne even covered by CO. As a result, kink Pt atoms at the cluster edges are driven to diffuse to form straight steps, so as to admit more ethylidyne at steps. In contrast, Pt(557) has (100) steps on which ethylidyne does not adsorb, therefore keeping the island structure after the introduction of C2H4. When 500 mTorr of C2H4 was added first into the high-pressure cell, a periodic pattern is resolved at step edges on Pt(332). In contrast, some bright species separated by more than 1 nm are observed on Pt(557). Further introducing 500 mTorr of CO does not facilitate the formation of Pt clusters. The structure and mobility under C2H4, H2, and CO were also studied on the Pt(100) surface, whose topmost layer is rearranged into a hexagonal overlayer in vacuum. Under 1 Torr of C2H4, the hexagonal reconstruction is preserved on Pt(100), which is covered by highly mobile adsorbates. Pt atoms on the hexagonal layer can also move as a result of the weakened interaction between the surface layer and the bulk. The mobility is enhanced under 1 Torr of 1:1 C2H4-H2 mixture because the Pt(100)-hex surface is active in ethylene hydrogenation. The surface mobility along with the catalytic reaction is quenched after introducing 3 mTorr of CO. Meanwhile, the hexagonal reconstruction is lifted by the adsorption of CO. At 5 × 10−6 Torr of C2H4, CO from background gases can also adsorb on Pt(100), creating Pt islands that do not revert to the hexagonal surface when the C2H4 pressure was further increased to 1 Torr. In order to understand the effect of substrates on surface reconstruction, the structure of the stepped Cu(557) surface was monitored in equilibrium with high pressures of gases. Cu generally binds to the reducing gases such as CO, H2, and C2H4 weaker than Pt, leading to a lower coverage on Cu than on Pt at the same gas pressure. Accordingly, 12 Torr of CO is required to induce clusters on Cu(557), because higher CO pressures are needed to keep a sufficient amount of CO that can stabilize clusters. At 1 Torr, large terraces with an average width of 23 nm are observed on Cu(557), because of the low diffusion barrier for Cu atoms both on terraces and along the steps. 500 mTorr of H2 results in step coalescence on Cu(557), giving rise to 6 nm wide terraces. C2H4 adsorption at 500 mTorr results in 5 nm large clusters. CO does not change the Cu(557) surface structure while adding into C2H4, but causes the appearance of large terraces while co-adsorbing with H2. Under oxidizing gases, for example 1 Torr of O2, the Cu(557) surface is significantly oxidized, forming thick layers of Cu oxide. Pt-based bimetallic nanoparticle catalysts were also investigated with AP-XPS under reaction conditions to study their surface chemistry. PtFe nanoparticles do not undergo any surface segregation at 298 K when the gas environment changes, but surface Fe atoms are partially reduced under the C2H4-H2 mixture and partially oxidized under O2. Neither does the surface composition of Pt9Co-Co core-shell nanoparticles change while heating under H2 even to 673 K nor do oxidation states. In Pt-Ni systems, at 393 K, Ni is oxidized under O2 and migrates to the surface because Ni is more susceptible to oxidation than Pt. In contrast, when the surface is reduced by H2, Pt segregates to the surface since the surface free energy of Pt is lower. Such segregation does not occur at 353 K owing to the low atomic mobility in lattice.

Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Book Description
Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
High Pressure Scanning Tunneling Microscopy (HP-STM) and Ambient Pressure X-ray Photoelectron Spectroscopy were used to study the structural properties and catalytic behavior of noble metal surfaces at high pressure. HP-STM was used to study the structural rearrangement of the top most atomic surface layer of the metal surfaces in response to changes in gas pressure and reactive conditions. AP-XPS was applied to single crystal and nanoparticle systems to monitor changes in the chemical composition of the surface layer in response to changing gas conditions. STM studies on the Pt(100) crystal face showed the lifting of the Pt(100)-hex surface reconstruction in the presence of CO, H2, and Benzene. The gas adsorption and subsequent charge transfer relieves the surface strain caused by the low coordination number of the (100) surface atoms allowing the formation of a (1 x 1) surface structure commensurate with the bulk terminated crystal structure. The surface phase change causes a transformation of the surface layer from hexagonal packing geometry to a four-fold symmetric surface which is rich in atomic defects. Lifting the hex reconstruction at room temperature resulted in a surface structure decorated with 2-3 nm Pt adatom islands with a high density of step edge sites. Annealing the surface at a modest temperature (150 C) in the presence of a high pressure of CO or H2 increased the surface diffusion of the Pt atoms causing the adatom islands to aggregate reducing the surface concentration of low coordination defect sites. Ethylene hydrogenation was studied on the Pt(100) surface using HP-STM. At low pressure, the lifting of the hex reconstruction was observed in the STM images. Increasing the ethylene pressure to 1 Torr, was found to regenerate the hexagonally symmetric reconstructed phase. At room temperature ethylene undergoes a structural rearrangement to form ethylidyne. Ethylidyne preferentially binds at the three-fold hollow sites, which are present on the Pt(100) hex reconstructed phase, but not the (100)-(1x1) surface. The increase in ethylene pressure caused the adsorbate interactions to dominate the crystal morphology and imposed a surface layer structure that matched the ethylidyne binding geometry. The STM results also showed that the surface was reversibly deformed during imaging due to increases in Pt mobility at high pressure. The size dependence on the activity and surface chemistry of Rh nanoparticles was studied using AP-XPS. The activity was found to increase with particle size. The XPS spectra show that in reaction conditions the particle surface has an oxide layer which is chemically distinct from the surface structure formed by heating in oxygen alone. This surface oxide which is stabilized in the catalytically active CO oxidation conditions was found to be more prevalent on the smaller nanoparticles. The reaction-induced surface segregation behavior of bimetallic noble metal nanoparticles was observed with APXPS. Monodisperse 15 nm RhPd and PdPt nanoparticles were synthesized with well controlled Rh/Pd and Pd/Pt compositions. In-situ XPS studies showed that at 300 C in the presence of an oxidizing environment (100 mTorr NO or O2) the surface concentration of the more easily oxidized element (Rh in RhPd and Pd in PdPt) was increased. Switching the gas environment to more reducing conditions (100 mTorr NO and 100 mTorr CO) caused the surface enrichment of the element with the lowest surface energy in its metallic state. Using in-situ characterization, the redox chemistry and the surface composition of bimetallic nanoparticle samples were monitored in reactive conditions. The particle surfaces were shown to reversibly restructure in response to the gas environment at high temperature. The oxidation behavior of the Pt(110) surface was studied using surface sensitive in-situ characterization by APXPS and STM. In the presence of 500 mTorr O2 and temperatures between 25 and 200 C, subsurface oxygen was detected in the surface layer. STM images show that these conditions were found to cause a roughened surface decorated with 1 nm islands. The formation of this surface oxide is a high pressure phenomenon and was not detected in 50 mTorr O2. After forming the surface oxide at high pressure, its chemical activity was measured through the reaction with CO at low pressure while continuously monitoring the oxygen species with XPS. The subsurface oxygen was removed by CO oxidation at a comparable rate to the chemisorbed oxygen at 2 C. Repeating the experiment at -3 C reduced the reaction rate, but not the relative activity of the two chemical species suggesting that neither species is significantly more active for the CO oxidation reaction. These studies use molecular level surface characterization in the presence of gases to show the structural changes induced by gas adsorption at high pressure.

Metal Nanoparticles for Catalysis

Metal Nanoparticles for Catalysis PDF Author: Franklin Tao
Publisher: Royal Society of Chemistry
ISBN: 1782621032
Category : Technology & Engineering
Languages : en
Pages : 285

Book Description
Catalysis is a central topic in chemical transformation and energy conversion. Thanks to the spectacular achievements of colloidal chemistry and the synthesis of nanomaterials over the last two decades, there have also been significant advances in nanoparticle catalysis. Catalysis on different metal nanostructures with well-defined structures and composition has been extensively studied. Metal nanocrystals synthesized with colloidal chemistry exhibit different catalytic performances in contrast to metal nanoparticles prepared with impregnation or deposition precipitation. Additionally, theoretical approaches in predicting catalysis performance and understanding catalytic mechanism on these metal nanocatalysts have made significant progress. Metal Nanoparticles for Catalysis is a comprehensive text on catalysis on Nanoparticles, looking at both their synthesis and applications. Chapter topics include nanoreactor catalysis; Pd nanoparticles in C-C coupling reactions; metal salt-based gold nanocatalysts; theoretical insights into metal nanocatalysts; and nanoparticle mediated clock reaction. This book bridges the gap between nanomaterials synthesis and characterization, and catalysis. As such, this text will be a valuable resource for postgraduate students and researchers in these exciting fields.

Catalysis Looks to the Future

Catalysis Looks to the Future PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309045843
Category : Science
Languages : en
Pages : 97

Book Description
The impact of catalysis on the nation's economy is evidenced by the fact that catalytic technologies generate U.S. sales in excess of $400 billion per year and a net positive balance of trade of $16 billion annually. This book outlines recent accomplishments in the science and technology of catalysis and summarizes important likely challenges and opportunities on the near horizon. It also presents recommendations for investment of financial and human resources by industry, academe, national laboratories, and relevant federal agencies if the nation is to maintain continuing leadership in this fieldâ€"one that is critical to the chemical and petroleum processing industries, essential for energy-efficient means for environmental protection, and vital for the production of a broad range of pharmaceuticals.

Electron Spectroscopy

Electron Spectroscopy PDF Author: C. R. Brundle
Publisher: Mittal Publications
ISBN: 9788170998259
Category : Electron spectroscopy
Languages : en
Pages : 274

Book Description


Nanoalloys

Nanoalloys PDF Author: Florent Calvo
Publisher: Newnes
ISBN: 0123946166
Category : Technology & Engineering
Languages : en
Pages : 433

Book Description
Nanoalloys: From Fundamentals to Emergent Applications presents and discusses the major topics related to nanoalloys at a time when the literature on the subject remains scarce. Particular attention is paid to experimental and theoretical aspects under the form of broad reviews covering the most recent developments. The book is organized into 11 chapters covering the most fundamental aspects of nanoalloys related to their synthesis and characterization, as well as their theoretical study. Aspects related to their thermodynamics and kinetics are covered as well. The coverage then moves to more specific topics, including optics, magnetism and catalysis, and finally to biomedical applications and the technologically relevant issue of self-assembly. With no current single reference source on the subject, the work is invaluable for researchers as the nanoscience field moves swiftly to full monetization. Encapsulates physical science of structure, properties, size, composition and ordering at nanoscale, aiding synthesis of experimentation and modelling Multi-expert and interdisciplinary perspectives on growth, synthesis and characterization of bimetallic clusters and particulates supports expansion of your current research activity into applications Synthesizes concepts and draws links between fundamental metallurgy and cutting edge nanoscience, aiding interdisciplinary research activity

Hard X-ray Photoelectron Spectroscopy (HAXPES)

Hard X-ray Photoelectron Spectroscopy (HAXPES) PDF Author: Joseph Woicik
Publisher: Springer
ISBN: 3319240439
Category : Science
Languages : en
Pages : 576

Book Description
This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.

Scanning Tunneling Microscopy Studies on the Structure and Stability of Model Catalysts

Scanning Tunneling Microscopy Studies on the Structure and Stability of Model Catalysts PDF Author: Fan Yang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
An atomic level understanding of the structure and stability of model catalysts is essential for surface science studies in heterogeneous catalysis. Scanning tunneling microscopy (STM) can operate both in UHV and under realistic pressure conditions with a wide temperature span while providing atomic resolution images. Taking advantage of the ability of STM, our research focuses on 1) investigating the structure and stability of supported Au catalysts, especially under CO oxidation conditions, and 2) synthesizing and characterizing a series of alloy model catalysts for future model catalytic studies. In our study, Au clusters supported on TiO2(110) have been used to model supported Au catalysts. Our STM studies in UHV reveal surface structures of TiO2(110) and show undercoordinated Ti cations play a critical role in the nucleation and stabilization of Au clusters on TiO2(110). Exposing the TiO2(110) surface to water vapor causes the formation of surface hydroxyl groups and subsequently alters the growth kinetics of Au clusters on TiO2(110). STM studies on Au/TiO2(110) during CO oxidation demonstrate the real surface of a working catalyst. Au clusters supported on TiO2(110) sinter rapidly during CO oxidation, but are mostly stable in the single component reactant gas, either CO or O2. The sintering kinetics of supported Au clusters has been measured during CO oxidation and gives an activation energy, which supports the mechanism of CO oxidation induced sintering. CO oxidation was also found to accelerate the surface diffusion of Rh(110). Our results show a direct correlation between the reaction rate of CO oxidation and the diffusion rate of surface metal atoms. Synthesis of alloy model catalysts have also been attempted in our study with their structures successfully characterized. Planar Au-Pd alloy films has been prepared on a Rh(100) surface with surface Au and Pd atoms distinguished by STM. The growth of Au-Ag alloy clusters have been studied by in-situ STM on a cluster-to-cluster basis. Moreover, the atomic structure of a solution-prepared Ru3Sn3 cluster has been resolved on an ultra-thin silica film surface. The atomic structure and adsorption sites of the ultrathin silica film have also been well characterized in our study.

Ceramic Abstracts

Ceramic Abstracts PDF Author: American Ceramic Society
Publisher:
ISBN:
Category : Ceramics
Languages : en
Pages : 1150

Book Description