Author: Anders Nilsson
Publisher: Elsevier
ISBN: 0080551912
Category : Science
Languages : en
Pages : 533
Book Description
Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces
Chemical Bonding at Surfaces and Interfaces
Author: Anders Nilsson
Publisher: Elsevier
ISBN: 0080551912
Category : Science
Languages : en
Pages : 533
Book Description
Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces
Publisher: Elsevier
ISBN: 0080551912
Category : Science
Languages : en
Pages : 533
Book Description
Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces
Dynamics of Gas-Surface Scattering
Author: Frank O. Goodman
Publisher: Elsevier
ISBN: 0323154611
Category : Science
Languages : en
Pages : 352
Book Description
Dynamics of Gas-Surface Scattering deals with the dynamics of scattering as inferred from known properties of gases and solids. This book discusses measurements of spatial distributions of scattered atomic and molecular streams, and of the energy and momentum which gas particles exchange at solid surfaces. It also considers two regimes of scattering, both of which are associated with a lower range of incident gas energies: the thermal and structure scattering regimes. Comprised of 10 chapters, this book opens with a brief historical overview of the early experiments that investigated the dynamics of scattering of gases by surfaces. The discussion then turns to some elements of the kinetic theory of gases; intermodular potentials and interaction regimes; and classical-mechanical lattice models used in gas-surface scattering theory. The applications of molecular beams to the study of gas-surface scattering phenomena are also described. The remaining chapters focus on experiments and theories on scattering of molecular streams by surfaces of solids, with emphasis on thermal and structure regimes of inelastic scattering; quantum theory of gas-surface scattering; and quantum mechanical scattering phenomena. This text concludes with an analysis of energy exchange processes that may occur when a solid surface is completely immersed in a still gas. This monograph will be a valuable resource for students and practitioners of physics, chemistry, and applied mathematics.
Publisher: Elsevier
ISBN: 0323154611
Category : Science
Languages : en
Pages : 352
Book Description
Dynamics of Gas-Surface Scattering deals with the dynamics of scattering as inferred from known properties of gases and solids. This book discusses measurements of spatial distributions of scattered atomic and molecular streams, and of the energy and momentum which gas particles exchange at solid surfaces. It also considers two regimes of scattering, both of which are associated with a lower range of incident gas energies: the thermal and structure scattering regimes. Comprised of 10 chapters, this book opens with a brief historical overview of the early experiments that investigated the dynamics of scattering of gases by surfaces. The discussion then turns to some elements of the kinetic theory of gases; intermodular potentials and interaction regimes; and classical-mechanical lattice models used in gas-surface scattering theory. The applications of molecular beams to the study of gas-surface scattering phenomena are also described. The remaining chapters focus on experiments and theories on scattering of molecular streams by surfaces of solids, with emphasis on thermal and structure regimes of inelastic scattering; quantum theory of gas-surface scattering; and quantum mechanical scattering phenomena. This text concludes with an analysis of energy exchange processes that may occur when a solid surface is completely immersed in a still gas. This monograph will be a valuable resource for students and practitioners of physics, chemistry, and applied mathematics.
The Near-Surface Layer of the Ocean
Author: Alexander Soloviev
Publisher: Springer Science & Business Media
ISBN: 1402040539
Category : Science
Languages : en
Pages : 586
Book Description
Until the 1980s, a tacit agreement among many physical oceanographers was that nothing deserving attention could be found in the upper few meters of the ocean. The lack of adequete knowledge about the near-surface layer of the ocean was mainly due to the fact that the widely used oceanographic instruments (such as bathythermographs, CTDs, current meters, etc.) were practically useless in the upper few meters of the ocean. Interest in the ne- surface layer of the ocean rapidly increased along with the development of remote sensing techniques. The interpretation of ocean surface signals sensed from satellites demanded thorough knowledge of upper ocean processes and their connection to the ocean interior. Despite its accessibility to the investigator, the near-surface layer of the ocean is not a simple subject of experimental study. Random, sometimes huge, vertical motions of the ocean surface due to surface waves are a serious complication for collecting quality data close to the ocean surface. The supposedly minor problem of avoiding disturbances from ships’ wakes has frustrated several generations of oceanographers attempting to take reliable data from the upper few meters of the ocean. Important practical applications nevertheless demanded action, and as a result several pioneering works in the 1970s and 1980s laid the foundation for the new subject of oceanography – the near-surface layer of the ocean.
Publisher: Springer Science & Business Media
ISBN: 1402040539
Category : Science
Languages : en
Pages : 586
Book Description
Until the 1980s, a tacit agreement among many physical oceanographers was that nothing deserving attention could be found in the upper few meters of the ocean. The lack of adequete knowledge about the near-surface layer of the ocean was mainly due to the fact that the widely used oceanographic instruments (such as bathythermographs, CTDs, current meters, etc.) were practically useless in the upper few meters of the ocean. Interest in the ne- surface layer of the ocean rapidly increased along with the development of remote sensing techniques. The interpretation of ocean surface signals sensed from satellites demanded thorough knowledge of upper ocean processes and their connection to the ocean interior. Despite its accessibility to the investigator, the near-surface layer of the ocean is not a simple subject of experimental study. Random, sometimes huge, vertical motions of the ocean surface due to surface waves are a serious complication for collecting quality data close to the ocean surface. The supposedly minor problem of avoiding disturbances from ships’ wakes has frustrated several generations of oceanographers attempting to take reliable data from the upper few meters of the ocean. Important practical applications nevertheless demanded action, and as a result several pioneering works in the 1970s and 1980s laid the foundation for the new subject of oceanography – the near-surface layer of the ocean.
Potential Energy Surfaces and Dynamics Calculations
Author: Donald Truhlar
Publisher: Springer Science & Business Media
ISBN: 1475717350
Category : Science
Languages : en
Pages : 859
Book Description
The present volume is concerned with two of the central questions of chemical dynamics. What do we know about the energies of interaction of atoms and molecules with each other and with solid surfaces? How can such interaction energies be used to understand and make quantitative predictions about dynamical processes like scattering, energy transfer, and chemical reactions? It is becoming clearly recognized that the computer is leading to rapid progress in answering these questions. The computer allows probing dynamical mechanisms in fine detail and often allows us to answer questions that cannot be addressed with current experimental techniques. As we enter the 1980's, not only are more powerful and faster computers being used, but techniques and methods have been honed to a state where exciting and reliable data are being generated on a variety of systems at an unprecedented pace. The present volume presents a collection of work that illustrates the capabilities and some of the successes of this kind of computer-assisted research. In a 1978 Chemical Society Report, Frey and Walsh pointed out that "it is extremely doubtful if a calculated energy of activation for any unimolecular decomposition can replace an experimental deter mination. " However they also recorded that they "believe[d] that some of the elaborate calculations being performed at present do suggest that we may be approaching a time when a choice between reaction mechanisms will be helped by such [computational] work.
Publisher: Springer Science & Business Media
ISBN: 1475717350
Category : Science
Languages : en
Pages : 859
Book Description
The present volume is concerned with two of the central questions of chemical dynamics. What do we know about the energies of interaction of atoms and molecules with each other and with solid surfaces? How can such interaction energies be used to understand and make quantitative predictions about dynamical processes like scattering, energy transfer, and chemical reactions? It is becoming clearly recognized that the computer is leading to rapid progress in answering these questions. The computer allows probing dynamical mechanisms in fine detail and often allows us to answer questions that cannot be addressed with current experimental techniques. As we enter the 1980's, not only are more powerful and faster computers being used, but techniques and methods have been honed to a state where exciting and reliable data are being generated on a variety of systems at an unprecedented pace. The present volume presents a collection of work that illustrates the capabilities and some of the successes of this kind of computer-assisted research. In a 1978 Chemical Society Report, Frey and Walsh pointed out that "it is extremely doubtful if a calculated energy of activation for any unimolecular decomposition can replace an experimental deter mination. " However they also recorded that they "believe[d] that some of the elaborate calculations being performed at present do suggest that we may be approaching a time when a choice between reaction mechanisms will be helped by such [computational] work.
Potential Energy Surfaces
Author: David Michael Hirst
Publisher: Taylor & Francis Group
ISBN:
Category : Science
Languages : en
Pages : 252
Book Description
Publisher: Taylor & Francis Group
ISBN:
Category : Science
Languages : en
Pages : 252
Book Description
Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces
Author: W.A. Steele
Publisher: Elsevier
ISBN: 0080531199
Category : Technology & Engineering
Languages : en
Pages : 909
Book Description
The fact that the surfaces of real solids are geometrically distorted and chemically non-uniform has long been realized by the scientists investigating various phenomena occurring on solid surfaces. Even in the case when diffraction experiments show a well-organized bulk solid structure, the surface atoms or molecules will usually exhibit a much smaller degree of surface organization. In addition to the results obtained from electron diffraction, this can be seen in the impressive images obtained from STM and AFM microscopies. This geometric and chemical disorder is the source of the energetic heterogeneity for molecules adsorbing on real solid surfaces. Hundreds of papers have been published showing that this heterogeneity is a major factor in determining the behaviour of real adsorption systems.Studies of adsorption on energetically heterogeneous surfaces have proceeded along three somewhat separate paths, with only minor coupling of ideas. One was the study of adsorption equilibria on heterogeneous solid surfaces. The second path was the study of time evolution of adsorption processes such as surface diffusion or adsorption-desorption kinetics on heterogeneous surfaces, and the third was the study of adsorption in porous solids, or more generally, adsorption in systems with limited dimensions. The present monograph is a first attempt to provide a synthesis of the ways that surface geometric and energetic heterogeneities affect both the equilibria and the time evolution of adsorption on real solids. The book contains 17 chapters written by a team of internationally recognized specialists, some of whom have already published books on adsorption.
Publisher: Elsevier
ISBN: 0080531199
Category : Technology & Engineering
Languages : en
Pages : 909
Book Description
The fact that the surfaces of real solids are geometrically distorted and chemically non-uniform has long been realized by the scientists investigating various phenomena occurring on solid surfaces. Even in the case when diffraction experiments show a well-organized bulk solid structure, the surface atoms or molecules will usually exhibit a much smaller degree of surface organization. In addition to the results obtained from electron diffraction, this can be seen in the impressive images obtained from STM and AFM microscopies. This geometric and chemical disorder is the source of the energetic heterogeneity for molecules adsorbing on real solid surfaces. Hundreds of papers have been published showing that this heterogeneity is a major factor in determining the behaviour of real adsorption systems.Studies of adsorption on energetically heterogeneous surfaces have proceeded along three somewhat separate paths, with only minor coupling of ideas. One was the study of adsorption equilibria on heterogeneous solid surfaces. The second path was the study of time evolution of adsorption processes such as surface diffusion or adsorption-desorption kinetics on heterogeneous surfaces, and the third was the study of adsorption in porous solids, or more generally, adsorption in systems with limited dimensions. The present monograph is a first attempt to provide a synthesis of the ways that surface geometric and energetic heterogeneities affect both the equilibria and the time evolution of adsorption on real solids. The book contains 17 chapters written by a team of internationally recognized specialists, some of whom have already published books on adsorption.
Quantum Chemistry and Dynamics of Excited States
Author: Leticia González
Publisher: John Wiley & Sons
ISBN: 1119417759
Category : Science
Languages : en
Pages : 52
Book Description
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
Publisher: John Wiley & Sons
ISBN: 1119417759
Category : Science
Languages : en
Pages : 52
Book Description
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
Level Set Methods and Dynamic Implicit Surfaces
Author: Stanley Osher
Publisher: Springer Science & Business Media
ISBN: 0387227466
Category : Mathematics
Languages : en
Pages : 292
Book Description
Very hot area with a wide range of applications; Gives complete numerical analysis and recipes, which will enable readers to quickly apply the techniques to real problems; Includes two new techniques pioneered by Osher and Fedkiw; Osher and Fedkiw are internationally well-known researchers in this area
Publisher: Springer Science & Business Media
ISBN: 0387227466
Category : Mathematics
Languages : en
Pages : 292
Book Description
Very hot area with a wide range of applications; Gives complete numerical analysis and recipes, which will enable readers to quickly apply the techniques to real problems; Includes two new techniques pioneered by Osher and Fedkiw; Osher and Fedkiw are internationally well-known researchers in this area
Structure and Dynamics
Author: Martin T. Dove
Publisher: Oxford University Press
ISBN: 9780198506782
Category : Science
Languages : en
Pages : 364
Book Description
This book describes how the arrangement and movement of atoms in a solid are related to the forces between atoms, and how they affect the behaviour and properties of materials. The book is intended for final year undergraduate students and graduate students in physics and materials science.
Publisher: Oxford University Press
ISBN: 9780198506782
Category : Science
Languages : en
Pages : 364
Book Description
This book describes how the arrangement and movement of atoms in a solid are related to the forces between atoms, and how they affect the behaviour and properties of materials. The book is intended for final year undergraduate students and graduate students in physics and materials science.
The Dynamic Structure of the Deep Earth
Author: Shun-Ichiro Karato
Publisher: Princeton University Press
ISBN: 9780691095110
Category : Science
Languages : en
Pages : 268
Book Description
Publisher Description
Publisher: Princeton University Press
ISBN: 9780691095110
Category : Science
Languages : en
Pages : 268
Book Description
Publisher Description