Structural Glasses and Supercooled Liquids PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Structural Glasses and Supercooled Liquids PDF full book. Access full book title Structural Glasses and Supercooled Liquids by Peter G. Wolynes. Download full books in PDF and EPUB format.

Structural Glasses and Supercooled Liquids

Structural Glasses and Supercooled Liquids PDF Author: Peter G. Wolynes
Publisher: John Wiley & Sons
ISBN: 0470452234
Category : Science
Languages : en
Pages : 422

Book Description
With contributions from 24 global experts in diverse fields, and edited by world-recognized leaders in physical chemistry, chemical physics and biophysics, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications presents a modern, complete survey of glassy phenomena in many systems based on firmly established characteristics of the underlying molecular motions as deduced by first principle theoretical calculations, or with direct/single-molecule experimental techniques. A well-rounded view of a variety of disordered systems where cooperative phenomena, which are epitomized by supercooled liquids, take place is provided. These systems include structural glasses and supercooled liquids, polymers, complex liquids, protein conformational dynamics, and strongly interacting electron systems with quenched/self-generated disorder. Detailed calculations and reasoned arguments closely corresponding with experimental data are included, making the book accessible to an educated non-expert reader.

Structural Glasses and Supercooled Liquids

Structural Glasses and Supercooled Liquids PDF Author: Peter G. Wolynes
Publisher: John Wiley & Sons
ISBN: 0470452234
Category : Science
Languages : en
Pages : 422

Book Description
With contributions from 24 global experts in diverse fields, and edited by world-recognized leaders in physical chemistry, chemical physics and biophysics, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications presents a modern, complete survey of glassy phenomena in many systems based on firmly established characteristics of the underlying molecular motions as deduced by first principle theoretical calculations, or with direct/single-molecule experimental techniques. A well-rounded view of a variety of disordered systems where cooperative phenomena, which are epitomized by supercooled liquids, take place is provided. These systems include structural glasses and supercooled liquids, polymers, complex liquids, protein conformational dynamics, and strongly interacting electron systems with quenched/self-generated disorder. Detailed calculations and reasoned arguments closely corresponding with experimental data are included, making the book accessible to an educated non-expert reader.

Structural Glasses and Supercooled Liquids

Structural Glasses and Supercooled Liquids PDF Author: Peter G. Wolynes
Publisher: John Wiley & Sons
ISBN: 1118202414
Category : Science
Languages : en
Pages : 422

Book Description
With contributions from 24 global experts in diverse fields, and edited by world-recognized leaders in physical chemistry, chemical physics and biophysics, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications presents a modern, complete survey of glassy phenomena in many systems based on firmly established characteristics of the underlying molecular motions as deduced by first principle theoretical calculations, or with direct/single-molecule experimental techniques. A well-rounded view of a variety of disordered systems where cooperative phenomena, which are epitomized by supercooled liquids, take place is provided. These systems include structural glasses and supercooled liquids, polymers, complex liquids, protein conformational dynamics, and strongly interacting electron systems with quenched/self-generated disorder. Detailed calculations and reasoned arguments closely corresponding with experimental data are included, making the book accessible to an educated non-expert reader.

A Molecular Dynamics Study of the Structure-dynamics Relationships of Supercooled Liquids and Glasses

A Molecular Dynamics Study of the Structure-dynamics Relationships of Supercooled Liquids and Glasses PDF Author: Ryan Soklaski
Publisher:
ISBN:
Category :
Languages : en
Pages : 115

Book Description
Central to the field of condensed matter physics is a decades old outstanding problem in the study of glasses -- namely explaining the extreme slowing of dynamics in a liquid as it is supercooled towards the so-called glass transition. Efforts to universally describe the stretched relaxation processes and heterogeneous dynamics that characteristically develop in supercooled liquids remain divided in both their approaches and successes. Towards this end, a consensus on the role that atomic and molecular structures play in the liquid is even more tenuous. However, mounting material science research efforts have culminated to reveal that the vast diversity of metallic glass species and their properties are rooted in an equally-broad set of structural archetypes. Herein lies the motivation of this dissertation: the detailed information available regarding the structure-property relationships of metallic glasses provides a new context in which one can study the evolution of a supercooled liquid by utilizing a structural motif that is known to dominate the glass. Cu_64 Zr_36 is a binary alloy whose good glass-forming ability and simple composition makes it a canonical material to both empirical and numerical studies. Here, we perform classical molecular dynamics simulations and conduct a comprehensive analysis of the dynamical regimes of liquid Cu_64 Zr_36, while focusing on the roles played by atomic icosahedral ordering -- a structural motif which ultimately percolates the glass' structure. Large data analysis techniques are leveraged to obtain uniquely detailed structural and dynamical information in this context. In doing so, we develop the first account of the origin of icosahedral order in this alloy, revealing deep connections between this incipient structural ordering, frustration-limited domain theory, and recent important empirical findings that are relevant to the nature of metallic liquids at large. Furthermore, important dynamical landmarks such as the breakdown of the Stokes-Einstein relationship, the decoupling of particle diffusivities, and the development of general "glassy" relaxation features are found to coincide with successive manifestation of icosahedral ordering that arise as the liquid is supercooled. Remarkably, we detect critical-like features in the growth of the icosahedron network, with signatures that suggest that a liquid-liquid phase transition may occur in the deeply supercooled regime to precede glass formation. Such a transition is predicted to occur in many supercooled liquids, although explicit evidence of this phenomenon in realistic systems is scarce. Ultimately this work concludes that icosahedral order characterizes all dynamical regimes of Cu_64 Zr_36, demonstrating the importance and utility of studying supercooled liquids in the context of locally-preferred structure. More broadly, it serves to confirm and inform recent theoretical and empirical findings that are central to understanding the physics underlying the glass transition.

Structural and Dynamic Heterogeneities of Supercooled Liquids and Metallic Glasses

Structural and Dynamic Heterogeneities of Supercooled Liquids and Metallic Glasses PDF Author: 胡遠超
Publisher:
ISBN:
Category : Metallic glasses
Languages : en
Pages : 189

Book Description


Structural Study of Supercooled Liquids and Metallic Glasses by High-energy X-ray Diffraction and Reverse Monte Carlo Simulation

Structural Study of Supercooled Liquids and Metallic Glasses by High-energy X-ray Diffraction and Reverse Monte Carlo Simulation PDF Author: Tae Ho Kim
Publisher:
ISBN: 9780549070207
Category :
Languages : en
Pages : 347

Book Description
The local structures of Ti-Zr-Ni liquids that form quasicrystal phases and TiFeSiO liquids that form crystal approximant phases were studied as a function of supercooling. This study found similarities between the supercooled liquid and quasicrystal structures in Ti-Zr-Ni and the liquid and approximant structures in TiFeSiO.

Supercooled Liquids, Glass Transition and Bulk Metallic Glasses: Volume 754

Supercooled Liquids, Glass Transition and Bulk Metallic Glasses: Volume 754 PDF Author: Takeshi Egami
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 512

Book Description
There has been a renaissance in glass science brought about by the development of concepts such as fragility index and the energy landscape with megabasins. Research on bulk metallic glasses has been explosive since their advent when MRS offered its first book on the topic. In 2000, a second book broadened the scope to include supercooled liquid, bulk glassy and nanocrystalline states. This book enhances the scope to include glass transition in diverse materials such as water, silicate and polymeric melts. Bringing these threads together in an interdisciplinary manner was fruitful and offers proof that while there is much common ground, gaps between various approaches to the glassy state remain to be bridged. Subjects include: the supercooled liquid; glass formability; structural relaxation and dynamics; structure determination and modeling; processing and applications of bulk metallic glasses; mechanical properties; mechanical properties - composites; crystallization; electronic and magnetic structure and properties; and nanoparticles and nonmetallic glasses.

Glass Transition on Cooling and Aging for Structural Glasses

Glass Transition on Cooling and Aging for Structural Glasses PDF Author: Hiroshi Kobayashi
Publisher: Eliva Press
ISBN: 9789994985494
Category :
Languages : en
Pages : 0

Book Description
Glass is out of equilibrium and reduces into an equilibrium solid. This whole process is a thermodynamical phase transition, while the so-called glass transition is an observable transition with no changes in structure. We describe that the glass transition is a purely kinetic phenomenon due to strong fluctuations in molecular configurations in supercooled liquid. Intermediate-range orders (IROs) have important roles on the glass transition process which is explained by the embryo and freezing of IROs. We conclude that the glass transition is an emergence of a new system of glass in a nonequilibrium state and a glass is a nanomaterial which is composed of a periodic nano-structure of IROs. The mean field theory introduced the random first order transition (RFOT) as the ideal glass transition which prevents the Kauzmann paradox. Recently, an ideal glass was realized using silicate glass during long aging below the Kauzmann temperature. An ideal glass is a nanomaterial which is composed of a periodic nano-structure of intermediate-range orders in an amorphous phase. The results identified the (spontaneous) dissipative structure as an equilibrium state of an ideal glass. An ideal glass is a temporal steady state toward the ground state of materials, which is a polycrystal.

Cooperative Motions in Supercooled Liquids and Glasses

Cooperative Motions in Supercooled Liquids and Glasses PDF Author: Jacob D. Stevenson
Publisher:
ISBN: 9781109135824
Category :
Languages : en
Pages : 91

Book Description
Why glasses behave like solids in the absence of their having any long range structural order, is a fundamental problem of statistical physics, one that has been actively researched for more than 80 years. Supported by the mean field theory of supercooled liquids and a deep connection to mean field spin glasses with one step replica symmetry breaking, the random first order transition theory offers a solution to the glass problem based on assuming proximity to an underlying ideal glass transition. In the deeply supercooled liquid the free energy landscape is dominated by metastable structural basins separated by large free energy barriers. The rate of inter-conversion between these structural states is ultimately driven by the entropic cost of remaining confined to one basin, a cost which is quantified by the configurational entropy. Both the activation free energy barrier and the number of cooperatively moving particles required to overcome the barrier diverge as the ideal glass transition is approached. The cooperative nature of the dynamics in the deeply supercooled liquid regime has been confirmed by experiments and simulations and has been the subject of intense study in recent years. In the following we explore the implications of cooperative dynamics in the random first order transition theory with particular focus on the expected behavior at the ideal glass transition temperature and at the dynamical crossover, the temperature where activated motions first become important. We also show how the general features of secondary relaxation can be recovered by adding local fluctuations to the equations describing cooperative reconfiguration. Finally, we describe how cooperatively rearranging regions modify dynamics near the surface of glasses, reducing the apparent viscosity by several orders of magnitude.

Fundamentals of Inorganic Glasses

Fundamentals of Inorganic Glasses PDF Author: Arun K. Varshneya
Publisher: Elsevier
ISBN: 0128162260
Category : Science
Languages : en
Pages : 753

Book Description
Fundamentals of Inorganic Glasses, Third Edition, is a comprehensive reference on the field of glass science and engineering that covers numerous, significant advances. This new edition includes the most recent advances in glass physics and chemistry, also discussing groundbreaking applications of glassy materials. It is suitable for upper level glass science courses and professional glass scientists and engineers at industrial and government labs. Fundamental concepts, chapter-ending problem sets, an emphasis on key ideas, and timely notes on suggested readings are all included. The book provides the breadth required of a comprehensive reference, offering coverage of the composition, structure and properties of inorganic glasses. Clearly develops fundamental concepts and the basics of glass science and glass chemistry Provides a comprehensive discussion of the composition, structure and properties of inorganic glasses Features a discussion of the emerging applications of glass, including applications in energy, environment, pharmaceuticals, and more Concludes chapters with problem sets and suggested readings to facilitate self-study

Structural Origins of Crystallization of Metallic Glasses in the Supercooled Liquid Region

Structural Origins of Crystallization of Metallic Glasses in the Supercooled Liquid Region PDF Author: 魏小雅
Publisher:
ISBN:
Category : Crystallization
Languages : en
Pages : 124

Book Description