Author: Douglas Thorby
Publisher: Butterworth-Heinemann
ISBN: 0080557155
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
This straightforward text, primer and reference introduces the theoretical, testing and control aspects of structural dynamics and vibration, as practised in industry today. Written by an expert engineer of over 40 years experience, the book comprehensively opens up the dynamic behavior of structures and provides engineers and students with a comprehensive practice based understanding of the key aspects of this key engineering topic. Written with the needs of engineers of a wide range of backgrounds in mind, this book will be a key resource for those studying structural dynamics and vibration at undergraduate level for the first time in aeronautical, mechanical, civil and automotive engineering. It will be ideal for laboratory classes and as a primer for readers returning to the subject, or coming to it fresh at graduate level. It is a guide for students to keep and for practicing engineers to refer to: its worked example approach ensures that engineers will turn to Thorby for advice in many engineering situations. - Presents students and practitioners in all branches of engineering with a unique structural dynamics resource and primer, covering practical approaches to vibration engineering while remaining grounded in the theory of the topic - Written by a leading industry expert, with a worked example lead approach for clarity and ease of understanding - Makes the topic as easy to read as possible, omitting no steps in the development of the subject; covers computer based techniques and finite elements
Structural Dynamics and Vibration in Practice
Author: Douglas Thorby
Publisher: Butterworth-Heinemann
ISBN: 0080557155
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
This straightforward text, primer and reference introduces the theoretical, testing and control aspects of structural dynamics and vibration, as practised in industry today. Written by an expert engineer of over 40 years experience, the book comprehensively opens up the dynamic behavior of structures and provides engineers and students with a comprehensive practice based understanding of the key aspects of this key engineering topic. Written with the needs of engineers of a wide range of backgrounds in mind, this book will be a key resource for those studying structural dynamics and vibration at undergraduate level for the first time in aeronautical, mechanical, civil and automotive engineering. It will be ideal for laboratory classes and as a primer for readers returning to the subject, or coming to it fresh at graduate level. It is a guide for students to keep and for practicing engineers to refer to: its worked example approach ensures that engineers will turn to Thorby for advice in many engineering situations. - Presents students and practitioners in all branches of engineering with a unique structural dynamics resource and primer, covering practical approaches to vibration engineering while remaining grounded in the theory of the topic - Written by a leading industry expert, with a worked example lead approach for clarity and ease of understanding - Makes the topic as easy to read as possible, omitting no steps in the development of the subject; covers computer based techniques and finite elements
Publisher: Butterworth-Heinemann
ISBN: 0080557155
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
This straightforward text, primer and reference introduces the theoretical, testing and control aspects of structural dynamics and vibration, as practised in industry today. Written by an expert engineer of over 40 years experience, the book comprehensively opens up the dynamic behavior of structures and provides engineers and students with a comprehensive practice based understanding of the key aspects of this key engineering topic. Written with the needs of engineers of a wide range of backgrounds in mind, this book will be a key resource for those studying structural dynamics and vibration at undergraduate level for the first time in aeronautical, mechanical, civil and automotive engineering. It will be ideal for laboratory classes and as a primer for readers returning to the subject, or coming to it fresh at graduate level. It is a guide for students to keep and for practicing engineers to refer to: its worked example approach ensures that engineers will turn to Thorby for advice in many engineering situations. - Presents students and practitioners in all branches of engineering with a unique structural dynamics resource and primer, covering practical approaches to vibration engineering while remaining grounded in the theory of the topic - Written by a leading industry expert, with a worked example lead approach for clarity and ease of understanding - Makes the topic as easy to read as possible, omitting no steps in the development of the subject; covers computer based techniques and finite elements
Vibration Analysis and Structural Dynamics for Civil Engineers
Author: Alphose Zingoni
Publisher: CRC Press
ISBN: 1482264072
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Appeals to the Student and the Seasoned Professional While the analysis of a civil-engineering structure typically seeks to quantify static effects (stresses and strains), there are some aspects that require considerations of vibration and dynamic behavior. Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations is relevant to instances that involve significant time-varying effects, including impact and sudden movement. It explains the basic theory to undergraduate and graduate students taking courses on vibration and dynamics, and also presents an original approach for the vibration analysis of symmetric systems, for both researchers and practicing engineers. Divided into two parts, it first covers the fundamentals of the vibration of engineering systems, and later addresses how symmetry affects vibration behavior. Part I treats the modeling of discrete single and multi-degree-of-freedom systems, as well as mathematical formulations for continuous systems, both analytical and numerical. It also features some worked examples and tutorial problems. Part II introduces the mathematical concepts of group theory and symmetry groups, and applies these to the vibration of a diverse range of problems in structural mechanics. It reveals the computational benefits of the group-theoretic approach, and sheds new insights on complex vibration phenomena. The book consists of 11 chapters with topics that include: The vibration of discrete systems or lumped parameter models The free and forced response of single degree-of-freedom systems The vibration of systems with multiple degrees of freedom The vibration of continuous systems (strings, rods and beams) The essentials of finite-element vibration modelling Symmetry considerations and an outline of group and representation theories Applications of group theory to the vibration of linear mechanical systems Applications of group theory to the vibration of structural grids and cable nets Group-theoretic finite-element and finite-difference formulations Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations acquaints students with the fundamentals of vibration theory, informs experienced structural practitioners on simple and effective techniques for vibration modelling, and provides researchers with new directions for the development of computational vibration procedures.
Publisher: CRC Press
ISBN: 1482264072
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Appeals to the Student and the Seasoned Professional While the analysis of a civil-engineering structure typically seeks to quantify static effects (stresses and strains), there are some aspects that require considerations of vibration and dynamic behavior. Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations is relevant to instances that involve significant time-varying effects, including impact and sudden movement. It explains the basic theory to undergraduate and graduate students taking courses on vibration and dynamics, and also presents an original approach for the vibration analysis of symmetric systems, for both researchers and practicing engineers. Divided into two parts, it first covers the fundamentals of the vibration of engineering systems, and later addresses how symmetry affects vibration behavior. Part I treats the modeling of discrete single and multi-degree-of-freedom systems, as well as mathematical formulations for continuous systems, both analytical and numerical. It also features some worked examples and tutorial problems. Part II introduces the mathematical concepts of group theory and symmetry groups, and applies these to the vibration of a diverse range of problems in structural mechanics. It reveals the computational benefits of the group-theoretic approach, and sheds new insights on complex vibration phenomena. The book consists of 11 chapters with topics that include: The vibration of discrete systems or lumped parameter models The free and forced response of single degree-of-freedom systems The vibration of systems with multiple degrees of freedom The vibration of continuous systems (strings, rods and beams) The essentials of finite-element vibration modelling Symmetry considerations and an outline of group and representation theories Applications of group theory to the vibration of linear mechanical systems Applications of group theory to the vibration of structural grids and cable nets Group-theoretic finite-element and finite-difference formulations Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations acquaints students with the fundamentals of vibration theory, informs experienced structural practitioners on simple and effective techniques for vibration modelling, and provides researchers with new directions for the development of computational vibration procedures.
Engineering Dynamics and Vibrations
Author: Junbo Jia
Publisher: CRC Press
ISBN: 1351646214
Category : Science
Languages : en
Pages : 421
Book Description
Engineering dynamics and vibrations has become an essential topic for ensuring structural integrity and operational functionality in different engineering areas. However, practical problems regarding dynamics and vibrations are in many cases handled without success despite large expenditures. This book covers a wide range of topics from the basics to advances in dynamics and vibrations; from relevant engineering challenges to the solutions; from engineering failures due to inappropriate accounting of dynamics to mitigation measures and utilization of dynamics. It lays emphasis on engineering applications utilizing state-of-the-art information.
Publisher: CRC Press
ISBN: 1351646214
Category : Science
Languages : en
Pages : 421
Book Description
Engineering dynamics and vibrations has become an essential topic for ensuring structural integrity and operational functionality in different engineering areas. However, practical problems regarding dynamics and vibrations are in many cases handled without success despite large expenditures. This book covers a wide range of topics from the basics to advances in dynamics and vibrations; from relevant engineering challenges to the solutions; from engineering failures due to inappropriate accounting of dynamics to mitigation measures and utilization of dynamics. It lays emphasis on engineering applications utilizing state-of-the-art information.
Vibration Control of Active Structures
Author: A. Preumont
Publisher: Springer Science & Business Media
ISBN: 0306484226
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
My objective in writing this book was to cross the bridge between the structural dynamics and control communities, while providing an overview of the potential of SMART materials for sensing and actuating purposes in active vibration c- trol. I wanted to keep it relatively simple and focused on systems which worked. This resulted in the following: (i) I restricted the text to fundamental concepts and left aside most advanced ones (i.e. robust control) whose usefulness had not yet clearly been established for the application at hand. (ii) I promoted the use of collocated actuator/sensor pairs whose potential, I thought, was strongly underestimated by the control community. (iii) I emphasized control laws with guaranteed stability for active damping (the wide-ranging applications of the IFF are particularly impressive). (iv) I tried to explain why an accurate pred- tion of the transmission zeros (usually called anti-resonances by the structural dynamicists) is so important in evaluating the performance of a control system. (v) I emphasized the fact that the open-loop zeros are more difficult to predict than the poles, and that they could be strongly influenced by the model trun- tion (high frequency dynamics) or by local effects (such as membrane strains in piezoelectric shells), especially for nearly collocated distributed actuator/sensor pairs; this effect alone explains many disappointments in active control systems.
Publisher: Springer Science & Business Media
ISBN: 0306484226
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
My objective in writing this book was to cross the bridge between the structural dynamics and control communities, while providing an overview of the potential of SMART materials for sensing and actuating purposes in active vibration c- trol. I wanted to keep it relatively simple and focused on systems which worked. This resulted in the following: (i) I restricted the text to fundamental concepts and left aside most advanced ones (i.e. robust control) whose usefulness had not yet clearly been established for the application at hand. (ii) I promoted the use of collocated actuator/sensor pairs whose potential, I thought, was strongly underestimated by the control community. (iii) I emphasized control laws with guaranteed stability for active damping (the wide-ranging applications of the IFF are particularly impressive). (iv) I tried to explain why an accurate pred- tion of the transmission zeros (usually called anti-resonances by the structural dynamicists) is so important in evaluating the performance of a control system. (v) I emphasized the fact that the open-loop zeros are more difficult to predict than the poles, and that they could be strongly influenced by the model trun- tion (high frequency dynamics) or by local effects (such as membrane strains in piezoelectric shells), especially for nearly collocated distributed actuator/sensor pairs; this effect alone explains many disappointments in active control systems.
Structural Vibration
Author: C. Beards
Publisher: Elsevier
ISBN: 0080518052
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
Many structures suffer from unwanted vibrations and, although careful analysis at the design stage can minimise these, the vibration levels of many structures are excessive. In this book the entire range of methods of control, both by damping and by excitation, is described in a single volume.Clear and concise descriptions are given of the techniques for mathematically modelling real structures so that the equations which describe the motion of such structures can be derived. This approach leads to a comprehensive discussion of the analysis of typical models of vibrating structures excited by a range of periodic and random inputs. Careful consideration is also given to the sources of excitation, both internal and external, and the effects of isolation and transmissability. A major part of the book is devoted to damping of structures and many sources of damping are considered, as are the ways of changing damping using both active and passive methods. The numerous worked examples liberally distributed throughout the text, amplify and clarify the theoretical analysis presented. Particular attention is paid to the meaning and interpretation of results, further enhancing the scope and applications of analysis. Over 80 problems are included with answers and worked solutions to most. This book provides engineering students, designers and professional engineers with a detailed insight into the principles involved in the analysis and damping of structural vibration while presenting a sound theoretical basis for further study.Suitable for students of engineering to first degree level and for designers and practising engineersNumerous worked examplesClear and easy to follow
Publisher: Elsevier
ISBN: 0080518052
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
Many structures suffer from unwanted vibrations and, although careful analysis at the design stage can minimise these, the vibration levels of many structures are excessive. In this book the entire range of methods of control, both by damping and by excitation, is described in a single volume.Clear and concise descriptions are given of the techniques for mathematically modelling real structures so that the equations which describe the motion of such structures can be derived. This approach leads to a comprehensive discussion of the analysis of typical models of vibrating structures excited by a range of periodic and random inputs. Careful consideration is also given to the sources of excitation, both internal and external, and the effects of isolation and transmissability. A major part of the book is devoted to damping of structures and many sources of damping are considered, as are the ways of changing damping using both active and passive methods. The numerous worked examples liberally distributed throughout the text, amplify and clarify the theoretical analysis presented. Particular attention is paid to the meaning and interpretation of results, further enhancing the scope and applications of analysis. Over 80 problems are included with answers and worked solutions to most. This book provides engineering students, designers and professional engineers with a detailed insight into the principles involved in the analysis and damping of structural vibration while presenting a sound theoretical basis for further study.Suitable for students of engineering to first degree level and for designers and practising engineersNumerous worked examplesClear and easy to follow
Fundamentals of Structural Dynamics
Author: Roy R. Craig, Jr.
Publisher: John Wiley & Sons
ISBN: 1118174445
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
FUNDAMENTALS OF STRUCTURAL DYNAMICS From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics. This edition updates Professor Craig’s classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element–based computational methods, and dynamic testing methods, this Second Edition includes new and expanded coverage of computational methods, as well as introductions to more advanced topics, including experimental modal analysis and “active structures.” With a systematic approach, it presents solution techniques that apply to various engineering disciplines. It discusses single degree-of-freedom (SDOF) systems, multiple degrees-of-freedom (MDOF) systems, and continuous systems in depth; and includes numeric evaluation of modes and frequency of MDOF systems; direct integration methods for dynamic response of SDOF systems and MDOF systems; and component mode synthesis. Numerous illustrative examples help engineers apply the techniques and methods to challenges they face in the real world. MATLAB® is extensively used throughout the book, and many of the .m-files are made available on the book’s Web site. Fundamentals of Structural Dynamics, Second Edition is an indispensable reference and “refresher course” for engineering professionals; and a textbook for seniors or graduate students in mechanical engineering, civil engineering, engineering mechanics, or aerospace engineering.
Publisher: John Wiley & Sons
ISBN: 1118174445
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
FUNDAMENTALS OF STRUCTURAL DYNAMICS From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics. This edition updates Professor Craig’s classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element–based computational methods, and dynamic testing methods, this Second Edition includes new and expanded coverage of computational methods, as well as introductions to more advanced topics, including experimental modal analysis and “active structures.” With a systematic approach, it presents solution techniques that apply to various engineering disciplines. It discusses single degree-of-freedom (SDOF) systems, multiple degrees-of-freedom (MDOF) systems, and continuous systems in depth; and includes numeric evaluation of modes and frequency of MDOF systems; direct integration methods for dynamic response of SDOF systems and MDOF systems; and component mode synthesis. Numerous illustrative examples help engineers apply the techniques and methods to challenges they face in the real world. MATLAB® is extensively used throughout the book, and many of the .m-files are made available on the book’s Web site. Fundamentals of Structural Dynamics, Second Edition is an indispensable reference and “refresher course” for engineering professionals; and a textbook for seniors or graduate students in mechanical engineering, civil engineering, engineering mechanics, or aerospace engineering.
Vibration Problems in Structures
Author: Hugo Bachmann
Publisher: Birkhäuser
ISBN: 3034892314
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Authors: Hugo Bachmann, Walter J. Ammann, Florian Deischl, Josef Eisenmann, Ingomar Floegl, Gerhard H. Hirsch, Günter K. Klein, Göran J. Lande, Oskar Mahrenholtz, Hans G. Natke, Hans Nussbaumer, Anthony J. Pretlove, Johann H. Rainer, Ernst-Ulrich Saemann, Lorenz Steinbeisser. Large structures such as factories, gymnasia, concert halls, bridges, towers, masts and chimneys can be detrimentally affected by vibrations. These vibrations can cause either serviceability problems, severely hampering the user's comfort, or safety problems. The aim of this book is to provide structural and civil engineers working in construction and environmental engineering with practical guidelines for counteracting vibration problems. Dynamic actions are considered from the following sources of vibration: - human body motions, - rotating, oscillating and impacting machines, - wind flow, - road traffic, railway traffic and construction work. The main section of the book presents tools that aid in decision-making and in deriving simple solutions to cases of frequently occurring "normal" vibration problems. Complexer problems and more advanced solutions are also considered. In all cases these guidelines should enable the engineer to decide on appropriate solutions expeditiously. The appendices of the book contain fundamentals essential to the main chapters.
Publisher: Birkhäuser
ISBN: 3034892314
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Authors: Hugo Bachmann, Walter J. Ammann, Florian Deischl, Josef Eisenmann, Ingomar Floegl, Gerhard H. Hirsch, Günter K. Klein, Göran J. Lande, Oskar Mahrenholtz, Hans G. Natke, Hans Nussbaumer, Anthony J. Pretlove, Johann H. Rainer, Ernst-Ulrich Saemann, Lorenz Steinbeisser. Large structures such as factories, gymnasia, concert halls, bridges, towers, masts and chimneys can be detrimentally affected by vibrations. These vibrations can cause either serviceability problems, severely hampering the user's comfort, or safety problems. The aim of this book is to provide structural and civil engineers working in construction and environmental engineering with practical guidelines for counteracting vibration problems. Dynamic actions are considered from the following sources of vibration: - human body motions, - rotating, oscillating and impacting machines, - wind flow, - road traffic, railway traffic and construction work. The main section of the book presents tools that aid in decision-making and in deriving simple solutions to cases of frequently occurring "normal" vibration problems. Complexer problems and more advanced solutions are also considered. In all cases these guidelines should enable the engineer to decide on appropriate solutions expeditiously. The appendices of the book contain fundamentals essential to the main chapters.
Advanced Structural Dynamics
Author: Eduardo Kausel
Publisher: Cambridge University Press
ISBN: 1316772926
Category : Technology & Engineering
Languages : en
Pages : 749
Book Description
Developed from three decades' worth of lecture notes which the author used to teach at the Massachusetts Institute of Technology, this unique textbook presents a comprehensive treatment of structural dynamics and mechanical vibration. The chapters in this book are self-contained so that instructors can choose to be selective about which topics they teach. Written with an application-based focus, the text covers topics such as earthquake engineering, soil dynamics, and relevant numerical methods techniques that use MATLAB. Advanced topics such as the Hilbert transform, gyroscope forces, and spatially periodic structures are also treated extensively. Concise enough for an introductory course yet rigorous enough for an advanced or graduate-level course, this textbook is also a useful reference manual - even after the final exam - for professional and practicing engineers.
Publisher: Cambridge University Press
ISBN: 1316772926
Category : Technology & Engineering
Languages : en
Pages : 749
Book Description
Developed from three decades' worth of lecture notes which the author used to teach at the Massachusetts Institute of Technology, this unique textbook presents a comprehensive treatment of structural dynamics and mechanical vibration. The chapters in this book are self-contained so that instructors can choose to be selective about which topics they teach. Written with an application-based focus, the text covers topics such as earthquake engineering, soil dynamics, and relevant numerical methods techniques that use MATLAB. Advanced topics such as the Hilbert transform, gyroscope forces, and spatially periodic structures are also treated extensively. Concise enough for an introductory course yet rigorous enough for an advanced or graduate-level course, this textbook is also a useful reference manual - even after the final exam - for professional and practicing engineers.
Structural Dynamics
Author: Martin Williams
Publisher: CRC Press
ISBN: 1482266008
Category : Architecture
Languages : en
Pages : 265
Book Description
Dynamics is increasingly being identified by consulting engineers as one of the key skills which needs to be taught in civil engineering degree programs. This is driven by the trend towards lighter, more vibration-prone structures, the growth of business in earthquake regions, the identification of new threats such as terrorist attack and the increased availability of sophisticated dynamic analysis tools. Martin Williams presents this short, accessible introduction to the area of structural dynamics. He begins by describing dynamic systems and their representation for analytical purposes. The two main chapters deal with linear analysis of single (SDOF) and multi-degree-of-freedom (MDOF) systems, under free vibration and in response to a variety of forcing functions. Hand analysis of continuous systems is covered briefly to illustrate the key principles. Methods of calculation of non-linear dynamic response is also discussed. Lastly, the key principles of random vibration analysis are presented – this approach is crucial for wind engineering and is increasingly important for other load cases. An appendix briefly summarizes relevant mathematical techniques. Extensive use is made of worked examples, mostly drawn from civil engineering (though not exclusively – there is considerable benefit to be gained from emphasizing the commonality with other branches of engineering). This introductory dynamics textbook is aimed at upper level civil engineering undergraduates and those starting an M.Sc. course in the area.
Publisher: CRC Press
ISBN: 1482266008
Category : Architecture
Languages : en
Pages : 265
Book Description
Dynamics is increasingly being identified by consulting engineers as one of the key skills which needs to be taught in civil engineering degree programs. This is driven by the trend towards lighter, more vibration-prone structures, the growth of business in earthquake regions, the identification of new threats such as terrorist attack and the increased availability of sophisticated dynamic analysis tools. Martin Williams presents this short, accessible introduction to the area of structural dynamics. He begins by describing dynamic systems and their representation for analytical purposes. The two main chapters deal with linear analysis of single (SDOF) and multi-degree-of-freedom (MDOF) systems, under free vibration and in response to a variety of forcing functions. Hand analysis of continuous systems is covered briefly to illustrate the key principles. Methods of calculation of non-linear dynamic response is also discussed. Lastly, the key principles of random vibration analysis are presented – this approach is crucial for wind engineering and is increasingly important for other load cases. An appendix briefly summarizes relevant mathematical techniques. Extensive use is made of worked examples, mostly drawn from civil engineering (though not exclusively – there is considerable benefit to be gained from emphasizing the commonality with other branches of engineering). This introductory dynamics textbook is aimed at upper level civil engineering undergraduates and those starting an M.Sc. course in the area.
Introduction to Structural Dynamics
Author: Bruce K. Donaldson
Publisher: Cambridge University Press
ISBN: 1139459082
Category : Technology & Engineering
Languages : en
Pages : 566
Book Description
This textbook, first published in 2006, provides the student of aerospace, civil and mechanical engineering with all the fundamentals of linear structural dynamics analysis. It is designed for an advanced undergraduate or first-year graduate course. This textbook is a departure from the usual presentation in two important respects. First, descriptions of system dynamics are based on the simpler to use Lagrange equations. Second, no organizational distinctions are made between multi-degree of freedom systems and single-degree of freedom systems. The textbook is organized on the basis of first writing structural equation systems of motion, and then solving those equations mostly by means of a modal transformation. The text contains more material than is commonly taught in one semester so advanced topics are designated by an asterisk. The final two chapters can also be deferred for later studies. The text contains numerous examples and end-of-chapter exercises.
Publisher: Cambridge University Press
ISBN: 1139459082
Category : Technology & Engineering
Languages : en
Pages : 566
Book Description
This textbook, first published in 2006, provides the student of aerospace, civil and mechanical engineering with all the fundamentals of linear structural dynamics analysis. It is designed for an advanced undergraduate or first-year graduate course. This textbook is a departure from the usual presentation in two important respects. First, descriptions of system dynamics are based on the simpler to use Lagrange equations. Second, no organizational distinctions are made between multi-degree of freedom systems and single-degree of freedom systems. The textbook is organized on the basis of first writing structural equation systems of motion, and then solving those equations mostly by means of a modal transformation. The text contains more material than is commonly taught in one semester so advanced topics are designated by an asterisk. The final two chapters can also be deferred for later studies. The text contains numerous examples and end-of-chapter exercises.