Strongly Strained Growth of Vanadium Dioxide Thin Films on Microscale Ruthenium Dioxide Islands PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Strongly Strained Growth of Vanadium Dioxide Thin Films on Microscale Ruthenium Dioxide Islands PDF full book. Access full book title Strongly Strained Growth of Vanadium Dioxide Thin Films on Microscale Ruthenium Dioxide Islands by Simon Fischer. Download full books in PDF and EPUB format.

Strongly Strained Growth of Vanadium Dioxide Thin Films on Microscale Ruthenium Dioxide Islands

Strongly Strained Growth of Vanadium Dioxide Thin Films on Microscale Ruthenium Dioxide Islands PDF Author: Simon Fischer
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Vanadium dioxide exhibits a metal-insulator transition (MIT) which comprises an electronic and a structural component. Accordingly, it is often understood as a cooperative effect of a structure-induced Peierls transition and a electron correlations-induced Mott transition. The structural transition can be exploited by subjecting VO2 thin films to epitaxial stress, which stabilizes either the low temperature insulating or the high temperature metallic phase. Through this strain engineering approach, the transition temperature can be tuned from its bulk value of 68 °C, tailoring the material towards technological applications. In the present thesis, massively strained thin films of VO2 on micron-sized RuO2 islands are grown and analyzed. This is done, in large parts, in a low energy electron microscope (LEEM) instrument. The instrument allows for following surface processes in situ during oxidation and deposition experiments, giving microscopic and structural information on the material. First, the RuO2 islands are fabricated by oxidizing a Ru(0001) surface using atomic oxygen from a thermal cracker. The resulting complex island morphology, which encompasses four different phases of RuO2, is studied during and after growth, assessing the kinetic and thermodynamic aspects that lead to their formation. It is found that a microcrystalline oxide phase serves as a nucleation hub for adjacent (110)- and (101)-oriented RuO2 structures, which then outgrow the incubator phase. The structural registry of a separate RuO2(100) phase to the substrate has been resolved and is found to lead to the distinct growth behavior that this phase exhibits compared to the others. On samples prepared in this way, VO2 was grown, again with the aid of atomic oxygen. This, as confirmed by x-ray absorption spectroscopy (XAS) and x-ray photoelectron spectroscopy (XPS), ensures that the stoichiometry of the films is correct. In situ low energy electron diffraction (LEED) measurements showed that during the growth of VO2 on RuO2(110), the lattice parameters stay constant. This indicates a very high strain near the pseudomorphic case (8.78 %). The VO2(110) surface was also found to exhibit a (2 × 2) reconstruction due to an oxygen-rich surface termination. Conversely, VO2 was found to grow relaxed on the (100)-oriented islands. Its VO2(100) surface is heavily faceted, indicating a high surface energy. Complementary measurement of the x-ray linear dichroism in these films finds that the VO2(110)/RuO2(110) islands exhibit spectra that are characteristic for the metallic phase. This may indicate that the MIT is suppressed in high-strain conditions. On VO2(100)/RuO2(100) islands, indications of a MIT are found. However, the VO2 films experience reduction due to the synchrotron beam, which can also induce the transition into the metallic state. Alongside a deeper understanding of Ru oxidation kinetics using atomic oxygen, this work opens up a remarkably high window of accessible strain for VO2 thin film growth and gives important insights into the surface of VO2, which until recently was often neglected.

Strongly Strained Growth of Vanadium Dioxide Thin Films on Microscale Ruthenium Dioxide Islands

Strongly Strained Growth of Vanadium Dioxide Thin Films on Microscale Ruthenium Dioxide Islands PDF Author: Simon Fischer
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Vanadium dioxide exhibits a metal-insulator transition (MIT) which comprises an electronic and a structural component. Accordingly, it is often understood as a cooperative effect of a structure-induced Peierls transition and a electron correlations-induced Mott transition. The structural transition can be exploited by subjecting VO2 thin films to epitaxial stress, which stabilizes either the low temperature insulating or the high temperature metallic phase. Through this strain engineering approach, the transition temperature can be tuned from its bulk value of 68 °C, tailoring the material towards technological applications. In the present thesis, massively strained thin films of VO2 on micron-sized RuO2 islands are grown and analyzed. This is done, in large parts, in a low energy electron microscope (LEEM) instrument. The instrument allows for following surface processes in situ during oxidation and deposition experiments, giving microscopic and structural information on the material. First, the RuO2 islands are fabricated by oxidizing a Ru(0001) surface using atomic oxygen from a thermal cracker. The resulting complex island morphology, which encompasses four different phases of RuO2, is studied during and after growth, assessing the kinetic and thermodynamic aspects that lead to their formation. It is found that a microcrystalline oxide phase serves as a nucleation hub for adjacent (110)- and (101)-oriented RuO2 structures, which then outgrow the incubator phase. The structural registry of a separate RuO2(100) phase to the substrate has been resolved and is found to lead to the distinct growth behavior that this phase exhibits compared to the others. On samples prepared in this way, VO2 was grown, again with the aid of atomic oxygen. This, as confirmed by x-ray absorption spectroscopy (XAS) and x-ray photoelectron spectroscopy (XPS), ensures that the stoichiometry of the films is correct. In situ low energy electron diffraction (LEED) measurements showed that during the growth of VO2 on RuO2(110), the lattice parameters stay constant. This indicates a very high strain near the pseudomorphic case (8.78 %). The VO2(110) surface was also found to exhibit a (2 × 2) reconstruction due to an oxygen-rich surface termination. Conversely, VO2 was found to grow relaxed on the (100)-oriented islands. Its VO2(100) surface is heavily faceted, indicating a high surface energy. Complementary measurement of the x-ray linear dichroism in these films finds that the VO2(110)/RuO2(110) islands exhibit spectra that are characteristic for the metallic phase. This may indicate that the MIT is suppressed in high-strain conditions. On VO2(100)/RuO2(100) islands, indications of a MIT are found. However, the VO2 films experience reduction due to the synchrotron beam, which can also induce the transition into the metallic state. Alongside a deeper understanding of Ru oxidation kinetics using atomic oxygen, this work opens up a remarkably high window of accessible strain for VO2 thin film growth and gives important insights into the surface of VO2, which until recently was often neglected.

Insulator to Metal Transition Dynamics of Vanadium Dioxide Thin Films

Insulator to Metal Transition Dynamics of Vanadium Dioxide Thin Films PDF Author: Scott Eric Madaras
Publisher:
ISBN:
Category : Thin films
Languages : en
Pages : 146

Book Description
Vanadium Dioxide (VO2) is a strongly correlated material which has been studied for many decades. VO2 has been proposed for uses in technologies such as optical modulators, IR modulators, optical switches and Mott memory devices. These technologies are taking advantage of VO2’s insulator to metal transition (IMT) and the corresponding changes to the optical and material properties. The insulator to metal transition in VO2 can be accessed by thermal heating, applied electric field, or ultra-fast photo induced processes. Recently, thin films of VO2 grown on Titanium Dioxide doped with Niobium (TiO2:Nb), have shown promise as a possible UV photo detector with high quantum efficiency which utilizes a heterostructure between these two materials. In this work, the dynamics of the IMT on thin films of VO2 is explored. We show that surface plasmons generated in an Au thin film can induce the insulator to metal transition in a thin film of VO2 due to the enhanced electric field as well as help detect the IMT via changes in its resonance condition. Time resolved pump probe studies were also done on thin films of VO2 grown on TiO2 and TiO2:Nb, using UV photon energy of 3.1 eV (400nm wavelength). The fluence threshold of the IMT at 3.1 eV was significantly lower than published values for the 1.55 eV pump fluence. The time response of the IMT shows uncommon reflectivity dynamics in these samples. The response was partially attributed to internal interference of the reflected probe beam from the inhomogeneous layers formed inside the film by different phases of VO2, and can be elucidated by a diffusion model with respect to its optical properties. Finally, the photocurrent generation time constants for the sample with highest quantum efficiency are given and compared to its ultrafast photo induced IMT time constants.

The Effect of Substrate Bias on the Growth of Vanadium Oxide Thin Films

The Effect of Substrate Bias on the Growth of Vanadium Oxide Thin Films PDF Author: Scott M. Kozlowski
Publisher:
ISBN:
Category :
Languages : en
Pages : 79

Book Description


The Solid-solid Phase Transition in Vanadium Dioxide Thin Films

The Solid-solid Phase Transition in Vanadium Dioxide Thin Films PDF Author: Joyeeta Nag
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 192

Book Description


Vanadium and Molybdenum Oxide Thin Films on Au(111)

Vanadium and Molybdenum Oxide Thin Films on Au(111) PDF Author: Sebastien Guimond
Publisher:
ISBN:
Category :
Languages : en
Pages : 123

Book Description


Electrospun Nanofibers

Electrospun Nanofibers PDF Author: Mehdi Afshari
Publisher: Woodhead Publishing
ISBN: 0081009119
Category : Technology & Engineering
Languages : en
Pages : 650

Book Description
Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. - Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers - Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers - Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development - Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science

Structure of BaTiO3

Structure of BaTiO3 PDF Author: Edward G. Grimsal
Publisher:
ISBN:
Category : Barium compounds
Languages : en
Pages : 8

Book Description


Materials Chemistry

Materials Chemistry PDF Author: Bradley D. Fahlman
Publisher: Springer
ISBN: 9402412557
Category : Technology & Engineering
Languages : en
Pages : 817

Book Description
The 3rd edition of this successful textbook continues to build on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 3rd edition offers significant updates throughout, with expanded sections on sustainability, energy storage, metal-organic frameworks, solid electrolytes, solvothermal/microwave syntheses, integrated circuits, and nanotoxicity. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions.

Nucleation and Growth of Thin Films

Nucleation and Growth of Thin Films PDF Author: Brian Lewis
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 518

Book Description


Nanoparticle Technology Handbook

Nanoparticle Technology Handbook PDF Author: Masuo Hosokawa
Publisher: Elsevier
ISBN: 008055802X
Category : Technology & Engineering
Languages : en
Pages : 645

Book Description
Nanoparticle technology, which handles the preparation, processing, application and characterisation of nanoparticles, is a new and revolutionary technology. It becomes the core of nanotechnology as an extension of the conventional Fine Particle / Powder Technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, Drug Delivery System, biotechnology, etc.; and makes use of the unique properties of the nanoparticles which are completely different from those of the bulk materials.This new handbook is the first to explain complete aspects of nanoparticles with many application examples showing their advantages and advanced development. There are handbooks which briefly mention the nanosized particles or their related applications, but no handbook describing the complete aspects of nanoparticles has been published so far.The handbook elucidates of the basic properties of nanoparticles and various nanostructural materials with their characterisation methods in the first part. It also introduces more than 40 examples of practical and potential uses of nanoparticles in the later part dealing with applications. It is intended to give readers a clear picture of nanoparticles as well as new ideas or hints on their applications to create new materials or to improve the performance of the advanced functional materials developed with the nanoparticles.* Introduces all aspects of nanoparticle technology, from the fundamentals to applications.* Includes basic information on the preparation through to the characterization of nanoparticles from various viewpoints * Includes information on nanostructures, which play an important role in practical applications.