Author: David K. Felbeck
Publisher: Pearson Education
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 584
Book Description
The second- or third-year engineering student who has completed a materials science course now requires a firm grounding on the principles and applications of the origins of mechanical properties of engineering materials. This book provides essential knowledge of mechanical properties, in a systematic sequence from the simple to the complex, so that the student can apply this knowledge to the design and manufacturing courses that follow.
Strength and Fracture of Engineering Solids
Author: David K. Felbeck
Publisher: Pearson Education
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 584
Book Description
The second- or third-year engineering student who has completed a materials science course now requires a firm grounding on the principles and applications of the origins of mechanical properties of engineering materials. This book provides essential knowledge of mechanical properties, in a systematic sequence from the simple to the complex, so that the student can apply this knowledge to the design and manufacturing courses that follow.
Publisher: Pearson Education
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 584
Book Description
The second- or third-year engineering student who has completed a materials science course now requires a firm grounding on the principles and applications of the origins of mechanical properties of engineering materials. This book provides essential knowledge of mechanical properties, in a systematic sequence from the simple to the complex, so that the student can apply this knowledge to the design and manufacturing courses that follow.
Physics of Strength and Fracture Control
Author: Anatoly A. Komarovsky
Publisher: CRC Press
ISBN: 1420040723
Category : Science
Languages : en
Pages : 671
Book Description
Still passive and for the most part uncontrollable, current systems intended to ensure the reliability and durability of engineering structures are still in their developmental infancy. They cannot make corrections or recondition materials, and most material and structural failures cannot be predicted. Accidents-and catastrophes-result. Phys
Publisher: CRC Press
ISBN: 1420040723
Category : Science
Languages : en
Pages : 671
Book Description
Still passive and for the most part uncontrollable, current systems intended to ensure the reliability and durability of engineering structures are still in their developmental infancy. They cannot make corrections or recondition materials, and most material and structural failures cannot be predicted. Accidents-and catastrophes-result. Phys
Fracture of Brittle Solids
Author: Brian R. Lawn
Publisher: Cambridge University Press
ISBN: 9780521409728
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book is a monograph on the brittle fracture of ceramic materials, in a unified continuum, microstructural and atomistic treatment.
Publisher: Cambridge University Press
ISBN: 9780521409728
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book is a monograph on the brittle fracture of ceramic materials, in a unified continuum, microstructural and atomistic treatment.
Engineering Solid Mechanics
Author: Abdel-Rahman A. Ragab
Publisher: CRC Press
ISBN: 1351450921
Category : Science
Languages : en
Pages : 944
Book Description
Engineering Solid Mechanics bridges the gap between elementary approaches to strength of materials and more advanced, specialized versions on the subject. The book provides a basic understanding of the fundamentals of elasticity and plasticity, applies these fundamentals to solve analytically a spectrum of engineering problems, and introduces advanced topics of mechanics of materials - including fracture mechanics, creep, superplasticity, fiber reinforced composites, powder compacts, and porous solids. Text includes: stress and strain, equilibrium, and compatibility elastic stress-strain relations the elastic problem and the stress function approach to solving plane elastic problems applications of the stress function solution in Cartesian and polar coordinates Problems of elastic rods, plates, and shells through formulating a strain compatibility function as well as applying energy methods Elastic and elastic-plastic fracture mechanics Plastic and creep deformation Inelastic deformation and its applications This book presents the material in an instructive manner, suitable for individual self-study. It emphasizes analytical treatment of the subject, which is essential for handling modern numerical methods as well as assessing and creating software packages. The authors provide generous explanations, systematic derivations, and detailed discussions, supplemented by a vast variety of problems and solved examples. Primarily written for professionals and students in mechanical engineering, Engineering Solid Mechanics also serves persons in other fields of engineering, such as aerospace, civil, and material engineering.
Publisher: CRC Press
ISBN: 1351450921
Category : Science
Languages : en
Pages : 944
Book Description
Engineering Solid Mechanics bridges the gap between elementary approaches to strength of materials and more advanced, specialized versions on the subject. The book provides a basic understanding of the fundamentals of elasticity and plasticity, applies these fundamentals to solve analytically a spectrum of engineering problems, and introduces advanced topics of mechanics of materials - including fracture mechanics, creep, superplasticity, fiber reinforced composites, powder compacts, and porous solids. Text includes: stress and strain, equilibrium, and compatibility elastic stress-strain relations the elastic problem and the stress function approach to solving plane elastic problems applications of the stress function solution in Cartesian and polar coordinates Problems of elastic rods, plates, and shells through formulating a strain compatibility function as well as applying energy methods Elastic and elastic-plastic fracture mechanics Plastic and creep deformation Inelastic deformation and its applications This book presents the material in an instructive manner, suitable for individual self-study. It emphasizes analytical treatment of the subject, which is essential for handling modern numerical methods as well as assessing and creating software packages. The authors provide generous explanations, systematic derivations, and detailed discussions, supplemented by a vast variety of problems and solved examples. Primarily written for professionals and students in mechanical engineering, Engineering Solid Mechanics also serves persons in other fields of engineering, such as aerospace, civil, and material engineering.
Fracture Mechanics
Author: Chin-Teh Sun
Publisher: Academic Press
ISBN: 0123850010
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.
Publisher: Academic Press
ISBN: 0123850010
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.
Deformation and Fracture Mechanics of Engineering Materials
Author: Richard W. Hertzberg
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 714
Book Description
This Third Edition of the well-received engineering materials book has been completely updated, and now contains over 1,100 citations. Thorough enough to serve as a text, and up-to-date enough to serve as a reference. There is a new chapter on strengthening mechanisms in metals, new sections on composites and on superlattice dislocations, expanded treatment of cast and powder-produced conventional alloys, plastics, quantitative fractography, JIC and KIEAC test procedures, fatigue, and failure analysis. Includes examples and case histories.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 714
Book Description
This Third Edition of the well-received engineering materials book has been completely updated, and now contains over 1,100 citations. Thorough enough to serve as a text, and up-to-date enough to serve as a reference. There is a new chapter on strengthening mechanisms in metals, new sections on composites and on superlattice dislocations, expanded treatment of cast and powder-produced conventional alloys, plastics, quantitative fractography, JIC and KIEAC test procedures, fatigue, and failure analysis. Includes examples and case histories.
Geologic Fracture Mechanics
Author: Richard A. Schultz
Publisher: Cambridge University Press
ISBN: 1107189993
Category : Business & Economics
Languages : en
Pages : 611
Book Description
Introduction to geologic fracture mechanics covering geologic structural discontinuities from theoretical and field-based perspectives.
Publisher: Cambridge University Press
ISBN: 1107189993
Category : Business & Economics
Languages : en
Pages : 611
Book Description
Introduction to geologic fracture mechanics covering geologic structural discontinuities from theoretical and field-based perspectives.
Engineering Solid Mechanics
Author: Abdel-Rahman A. Ragab
Publisher: CRC Press
ISBN: 9780849316074
Category : Science
Languages : en
Pages : 948
Book Description
Engineering Solid Mechanics bridges the gap between elementary approaches to strength of materials and more advanced, specialized versions on the subject. The book provides a basic understanding of the fundamentals of elasticity and plasticity, applies these fundamentals to solve analytically a spectrum of engineering problems, and introduces advanced topics of mechanics of materials - including fracture mechanics, creep, superplasticity, fiber reinforced composites, powder compacts, and porous solids. Text includes: stress and strain, equilibrium, and compatibility elastic stress-strain relations the elastic problem and the stress function approach to solving plane elastic problems applications of the stress function solution in Cartesian and polar coordinates Problems of elastic rods, plates, and shells through formulating a strain compatibility function as well as applying energy methods Elastic and elastic-plastic fracture mechanics Plastic and creep deformation Inelastic deformation and its applications This book presents the material in an instructive manner, suitable for individual self-study. It emphasizes analytical treatment of the subject, which is essential for handling modern numerical methods as well as assessing and creating software packages. The authors provide generous explanations, systematic derivations, and detailed discussions, supplemented by a vast variety of problems and solved examples. Primarily written for professionals and students in mechanical engineering, Engineering Solid Mechanics also serves persons in other fields of engineering, such as aerospace, civil, and material engineering.
Publisher: CRC Press
ISBN: 9780849316074
Category : Science
Languages : en
Pages : 948
Book Description
Engineering Solid Mechanics bridges the gap between elementary approaches to strength of materials and more advanced, specialized versions on the subject. The book provides a basic understanding of the fundamentals of elasticity and plasticity, applies these fundamentals to solve analytically a spectrum of engineering problems, and introduces advanced topics of mechanics of materials - including fracture mechanics, creep, superplasticity, fiber reinforced composites, powder compacts, and porous solids. Text includes: stress and strain, equilibrium, and compatibility elastic stress-strain relations the elastic problem and the stress function approach to solving plane elastic problems applications of the stress function solution in Cartesian and polar coordinates Problems of elastic rods, plates, and shells through formulating a strain compatibility function as well as applying energy methods Elastic and elastic-plastic fracture mechanics Plastic and creep deformation Inelastic deformation and its applications This book presents the material in an instructive manner, suitable for individual self-study. It emphasizes analytical treatment of the subject, which is essential for handling modern numerical methods as well as assessing and creating software packages. The authors provide generous explanations, systematic derivations, and detailed discussions, supplemented by a vast variety of problems and solved examples. Primarily written for professionals and students in mechanical engineering, Engineering Solid Mechanics also serves persons in other fields of engineering, such as aerospace, civil, and material engineering.
History of Strength of Materials
Author: Stephen Timoshenko
Publisher: Courier Corporation
ISBN: 9780486611877
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.
Publisher: Courier Corporation
ISBN: 9780486611877
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.
Applied Mechanics of Solids
Author: Allan F. Bower
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 820
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 820
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o